For the Bohr's first orbit of circumference 2πr, the de-Broglie wavelength of revolving electron will be

(a) 2πr                       (b) πr
(c) 12πr                      (d) 14πr

Subtopic:  Bohr's Model of Atom |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh

An electron of mass m when accelerated through a potential difference V has de-Broglie wavelength λ. The de-Broglie wavelength associated with a proton of mass M accelerated through the same potential difference will be

(1) λmM                           

(2) λmM

(3) λMm                           

(4) λMm

Subtopic:  De-broglie Wavelength |
 75%
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh
Hints

What is the de-Broglie wavelength of the α-particle accelerated through a potential difference V 
(1) 0.287V Å                 

(2) 12.27V Å

(3) 0.101V Å                 

(4) 0.202V Å

Subtopic:  De-broglie Wavelength |
 56%
From NCERT
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh

How much energy should be added to an electron to reduce its de-Broglie wavelength from 10-10 m to 0.5×10-10m?
1. Four times the initial energy.
2. Thrice the initial energy.
3. Equal to the initial energy.
4. Twice the initial energy.

Subtopic:  De-broglie Wavelength |
From NCERT
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh

The de-Broglie wavelength of an electron having 80eV of energy is nearly
(1eV =1.6×10-19 J, Mass of electron = 9×10-31Kg Plank’s constant = 6.6×10-34 J-sec)

(a) 140 Å                      (b) 0.14 Å
(c) 14 Å                        (d) 1.4 Å

Subtopic:  De-broglie Wavelength |
 57%
From NCERT
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh

If the following particles are moving at the same velocity, then which among them will have the maximum de-Broglie wavelength?
1. Neutron               

2. Proton

3. β-particle             

4. α-particle

Subtopic:  De-broglie Wavelength |
 59%
From NCERT
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh

If an electron and a photon propagate in the form of waves having the same wavelength, it implies that they have the same 
(1) Energy             

(2) Momentum

(3) Velocity             

(4) Angular momentum

Subtopic:  De-broglie Wavelength |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh

The de-Broglie wavelength is proportional to 
(1) λ1v               

(2) λ1m

(3) λ1p               

(4) λp

Subtopic:  De-broglie Wavelength |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh

Particle nature and wave nature of electromagnetic waves and electrons can be shown by 

(1) Electron has small mass, deflected by the metal sheet

(2) X-ray is diffracted, reflected by thick metal sheet

(3) Light is refracted and defracted

(4) Photoelectricity and electron microscopy

Subtopic:  Particle Nature of Light |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh

The de-Broglie wavelength of a particle moving with a velocity 2.25×108 m/s is equal to the wavelength of the photon. What is the ratio of the kinetic energy of the particle to the energy of the photon? (velocity of light is 3×108 m/s)

1. 1/8 2. 3/8
3. 5/8 4. 7/8
Subtopic:  De-broglie Wavelength |
 70%
From NCERT
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2021 - Achiever Batch - Aryan Raj Singh