The potential energy of a particle with displacement X depends as U(X). The motion is simple harmonic, when (K is a positive constant)
(1)
(2)
(3)
(4)
The angular velocity and the amplitude of a simple pendulum is and a respectively. At a displacement X from the mean position if its kinetic energy is T and potential energy is V, then the ratio of T to V is
(1)
(2)
(3)
(4)
A particle is executing simple harmonic motion with frequency f. The frequency at which its kinetic energy changes into potential energy, will be:
1. f/2
2. f
3. 2 f
4. 4 f
There is a body having mass m and performing S.H.M. with amplitude a. There is a restoring force , where x is the displacement. The total energy of body depends upon -
(1) K, x
(2) K, a
(3) K, a, x
(4) K, a, v
The potential energy of a simple harmonic oscillator when the particle is half way to its end point is (where E is the total energy)
(1)
(2)
(3)
(4)
A body executes simple harmonic motion. The potential energy (P.E.), the kinetic energy (K.E.) and total energy (T.E.) are measured as a function of displacement x. Which of the following statements is true ?
(1) P.E. is maximum when x = 0
(2) K.E. is maximum when x = 0
(3) T.E. is zero when x = 0
(4) K.E. is maximum when x is maximum
A man measures the period of a simple pendulum inside a stationary lift and finds it to be T sec. If the lift accelerates upwards with an acceleration , then the period of the pendulum will be
(1) T
(2)
(3)
(4)
The total energy of a particle, executing simple harmonic motion is
(1)
(2)
(3) Independent of x
(4)
A simple pendulum is suspended from the roof of a trolley which moves in a horizontal direction with an acceleration a, then the time period is given by , where is equal to
(1) g
(2) g-a
(3) g+a
(4)
If the length of second's pendulum is decreased by 2%, how many seconds it will lose per day?
1. 3927 sec
2. 3727 sec
3. 3427 sec
4. 864 sec