In a metre bridge experiment, the null point is obtained at 20 cm from one end of the wire when resistance X is balanced against another resistance Y. If X < Y, then where will be the new position of the null point from the same end, if one decides to balance a resistance of 4X against Y
(1) 50 cm
(2) 80 cm
(3) 40 cm
(4) 70 cm
In given figure, the potentiometer wire AB has a resistance of 5 Ω and length 10 m. The balancing length AM for the emf of 0.4 V is :
(1) 0.4 m
(2) 4 m
(3) 0.8 m
(4) 8 m
In a potentiometer experiment, the balancing with a cell is at length 240 cm. On shunting the cell with a resistance of 2 Ω, the balancing length becomes 120 cm. The internal resistance of the cell is :
1. 4 Ω
2. 2 Ω
3. 1 Ω
4. 0.5 Ω
A moving coil galvanometer of resistance 100Ω is used as an ammeter using a resistance 0.1Ω. The maximum deflection current in the galvanometer is 100 mA. Find the minimum current in the circuit so that the ammeter shows maximum deflection :
(1) 100.1 A
(2) 1000.1 mA
(3) 10.01 mA
(4) 1.01 mA
If the resistance of voltmeter is 10000Ω and resistance of ammeter is 2Ω then find R when voltmeter reads 12V and ammeter reads 0.1 A :
(1) 118 Ω
(2) 120 Ω
(3) 124 Ω
(4) 114Ω
Potentiometer wire of length 1 m is connected in series with 490 Ω resistance and 2V battery. If 0.2 mV/cm is the potential gradient, then the resistance of the potentiometer wire is :
(1) 4.9 Ω
(2) 7.9 Ω
(3) 5.9 Ω
(4) 6.9 Ω
In an electrical cable, there is a single wire of radius 9 mm of copper. Its resistance is 5 Ω. The cable is replaced by 6 different insulated copper wires, the radius of each wire is 3 mm. Now the total resistance of the cable will be :
(1) 7.5 Ω
(2) 45 Ω
(3) 90 Ω
(4) 270 Ω
Two uniform wires A and B are of the same metal and have equal masses. The radius of wire A is twice that of wire B. The total resistance of A and B when connected in parallel is :
(1) 4 Ω when the resistance of wire A is 4.25 Ω
(2) 5 Ω when the resistance of wire A is 4.25 Ω
(3) 4 Ω when the resistance of wire B is 4.25 Ω
(4) 7 Ω when the resistance of wire B is 4.25 Ω
Twelve wires of equal length and same cross-section are connected in the form of a cube. If the resistance of each of the wires is R, then the effective resistance between the two diagonal ends would be
(1) 2R
(2) 12R
(3)
(4) 8R
You are given several identical resistances each of value R = 10 Ω and each capable of carrying maximum current of 1 ampere. It is required to make a suitable combination of these resistances to produce a resistance of 5 Ω which can carry a current of 4 amperes. The minimum number of resistances of the type R that will be required for this job
(1) 4
(2) 10
(3) 8
(4) 20