A physical parameter a can be determined by measuring the parameters b, c, d and e using the relation a = . If the maximum errors in the measurement of b, c, d and e are b1%, c1%, d1% and e1%, then the maximum error in the value of a determined by the experiment is
(1) ()%
(2) ()%
(3) ()%
(4) ()%
The resistance R = where V= 100 ± 5 volts and i = 10 ± 0.2 amperes. What is the total error in R
(1) 5%
(2) 7%
(3) 5.2%
(4) %
The periods of oscillation of a simple pendulum in an experiment are recorded as 2.63 s, 2.56 s, 2.42 s, 2.71 s, and 2.80 s respectively. The average absolute error will be:
1. 0.1 s
2. 0.11 s
3. 0.01 s
4. 1.0 s
The length of a cylinder is measured with a meter rod having the least count of 0.1 cm. Its diameter is measured with vernier callipers having the least count of 0.01 cm. Given that the length is 5.0 cm and the radius is 2.0 cm. The percentage error in the calculated value of the volume will be
1. 1%
2. 2%
3. 3%
4. 4%
According to Joule's law of heating, heat produced H = I2Rt, where I is current, R is resistance and t is time. If the errors in the measurement of I, R and t are 3%, 4% and 6% respectively then error in the measurement of H is
(1) ± 17%
(2) ± 16%
(3) ± 19%
(4) ± 25%
A physical quantity P is given by P = . The quantity which contributes the maximum percentage error in P is:
1. A
2. B
3. C
4. D
If L = 2.331 cm, B = 2.1 cm, then L + B =?
1. 4.431 cm
2. 4.43 cm
3. 4.4 cm
4. 4 cm
The number of significant figures in the numbers \(25.12,\) \(2009,\) \(4.156\) and \(1.217\times 10^{-4}\) is:
1. \(1\)
2. \(2\)
3. \(3\)
4. \(4\)
If the length of rod A is 3.25 ± 0.01 cm and that of B is 4.19 ± 0.01 cm then the rod B is longer than rod A by
(1) 0.94 ± 0.00 cm
(2) 0.94 ± 0.01 cm
(3) 0.94 ± 0.02 cm
(4) 0.94 ± 0.005 cm
A physical quantity is given by . The percentage error in measurement of M, L and T are and respectively. Then maximum percentage error in the quantity X is
1.
2.
3.
4. None of these