A particle undergoes SHM with a time period of 2 seconds. In how much time will it travel from its mean position to a displacement equal to half of its amplitude?
(1)
(2)
(3)
(4)
The uniform stick of mass m length L is pivoted at the centre. In the equilibrium position shown in the figure, the identical light springs have their natural length. If the stick is turned through a small angle , it executes SHM. The frequency of the motion is:
(1)
(2)
(3)
(4) None of these
If the displacement x and the velocity v of a particle executing simple harmonic motion are related through the expression ,then its time period will be:
1. | \(\pi \) | 2. | \(2 \pi \) |
3. | \(4 \pi \) | 4. | \(6 \pi\) |
Two simple pendulums have time periods T and . They start vibrating at the same instant from the mean position in the same phase. The phase difference between them when bigger pendulum completes one oscillation will be:
1.
2.
3.
4.
A simple pendulum is oscillating without damping. When the displacement of the bob is less than maximum, its acceleration vector is correctly shown in:
1. | 2. | ||
3. | 4. |
A second's pendulum is mounted in a rocket. Its period of oscillation decreases when the rocket:
(1) Comes down with uniform acceleration
(2) Moves around the earth in a geostationary orbit
(3) Moves up with a uniform velocity
(4) Moves up with the uniform acceleration
There is a simple pendulum hanging from the ceiling of a lift. When the lift is stand still, the time period of the pendulum is T. If the resultant acceleration becomes g/4, then the new time period of the pendulum is
(1) 0.8 T
(2) 0.25 T
(3) 2 T
(4) 4 T
A block P of mass m is placed on a frictionless horizontal surface. Another block Q of same mass is kept on P and connected to the wall with the help of a spring of spring constant k as shown in the figure. μs is the coefficient of friction between P and Q. The blocks move together performing SHM of amplitude A. The maximum value of the friction force between P and Q will be:
1. kA
2.
3. Zero
4. μs mg
If a particle is executing SHM, with an amplitude A, the distance moved and the displacement of the body in a time equal to its time period are, respectively:
1. | 2A, A | 2. | 4A, 0 |
3. | A, A | 4. | 0, 2A |
The motion of a particle varies with time according to the relation . Then:
1. | The motion is oscillatory but not SHM |
2. | The motion is SHM with an amplitude \(a\sqrt{2}\) |
3. | The motion is SHM with an amplitude \(\sqrt{2}\) |
4. | The motion is SHM with an amplitude \(a\) |