The displacement of the particle is zero at t=0 and at t=t it is x. It starts moving in the x-direction with a velocity that varies as , where k is constant. The velocity will : (Here, \(v=\frac{dx}{dt}\))
1. vary with time.
2. be independent of time.
3. be inversely proportional to time.
4. be inversely proportional to acceleration.
The acceleration of a particle is given as . At t = 0, v = 0 and x = 0. It can then be concluded that the velocity at t = 2 sec will be: (Here, \(a=v\frac{dv}{dx}\))
1. 0.05 m/s
2. 0.5 m/s
3. 5 m/s
4. 50 m/s
The acceleration of a particle is given by a=3t at t=0, v=0, x=0. The velocity and displacement at t = 2 sec will be: (\(Here, a=\frac{dv}{dt}~ and~v=\frac{dx}{dt}\))
1. 6 m/s, 4 m
2. 4 m/s, 6 m
3. 3 m/s, 2 m
4. 2 m/s, 3 m
The 9 kg block is moving to the right with a velocity of 0.6 m/s on a horizontal surface when a force F, whose time variation is shown in the graph, is applied to it at time t = 0. Calculate the velocity v of the block when t= 0.4s. The coefficient of kinetic fricton is . [This question includes concepts from Work, Energy & Power chapter]
1. 0.6 m/s
2. 1.2 m/s
3. 1.8 m/s
4. 2.4 m/s
The relationship between force and position is shown in the figure given (in one dimensional case). Find the work done by the force in displaying a body from x= 1 cm to x= 5cm is [This question includes concepts from Work, Energy and Power chapter]
1. 10 erg
2. 20 erg
3. 30 erg
4. 40 erg
A long spring is stretched by 2 cm, its potential energy is U. If the spring is streched by 10 cm, find the potential energy stored in it.
1. 10 U
2. 15 U
3. 20 U
4. 25 U
A spring of spring constant is stretched initially by 5 cm from the unstretched position. Find the work required to stretch it further by another 5 cm is -
1. 15 J
2. 18.75 N .m
3. 20 J
4. 22.75 N .m
A constant force F is applied on a body. The power (P) generated is related to the time elapsed (t) as [This question includes concepts from Work, Energy and Power chapter]
1.
2.
3.
4.
The gravitational field due to a mass distribution is given by , where k is a constant. Assuming the potential to be zero at infinity, find the potential at a point x = a.[This question includes concepts from Gravitation chapter]
1.
2.
3.
4.
Consider a liquid of density in a container that spins with angular velocity as shown in figure. Find relation between y and x for any point P, if liquid rises due to rotation. [This question is only for Dropper and XII batch]
1.
2.
3.
4.