A car of mass \(1000\) kg negotiates a banked curve of radius \(90\) m on a frictionless road. If the banking angle is of \(45^\circ,\) the speed of the car is:
1. | \(20\) ms-1 | 2. | \(30\) ms-1 |
3. | \(5\) ms-1 | 4. | \(10\) ms-1 |
A body of mass \(M\) hits normally a rigid wall with velocity \(v\) and bounces back with the same velocity. The impulse experienced by the body is:
1. \(1.5Mv\)
2. \(2Mv\)
3. zero
4. \(Mv\)
A block of mass \(\mathrm{m}\) is in contact with the cart C as shown in the figure.
The coefficient of static friction between the block and the cart is . The acceleration of the cart that will prevent the block from falling satisfies:
1.
2.
3.
4.
The mass of a lift is \(2000\) kg. When the tension in the supporting cable is \(28000\) N, then its acceleration is:
(Take \(g=10\) m/s2)
1. | \(30\) ms-2 downwards |
2. | \(4\) ms-2 upwards |
3. | \(4\) ms-2 downwards |
4. | \(14\) ms-2 upwards |
Two blocks of masses \(2\) kg and \(3\) kg are tied at the ends of a light inextensible string passing over a frictionless pulley as shown.
If the system is accelerating upward with acceleration \(5\) m/s2, the tension in the string is:
1. \(24\) N
2. \(36\) N
3. \(48\) N
4. \(18\)N
A body, under the action of a force \(\overset{\rightarrow}{F} = 6 \hat{i} - 8 \hat{j} + 10 \hat{k}\), acquires an acceleration of 1 ms-2. The mass of this body must be:
1. 2 √10 kg
2. 10 kg
3. 20 kg
4. 10 √2 kg
1. | \(14\) m/s and \(15\) m/s |
2. | \(15\) m/s and \(16\) m/s |
3. | \(16\) m/s and \(17\) m/s |
4. | \(13\) m/s and \(14\) m/s |
A block B is pushed momentarily along a horizontal surface with an initial velocity \(\mathrm{v}.\) If \(\mu\) is the coefficient of sliding friction between B and the surface, the block B will come to rest after a time:
1. \(v \over g \mu\)
2. \(g \mu \over v\)
3. \(g \over v\)
4. \(v \over g\)
A particle slides down on a smooth incline of inclination , fixed in an elevator going up with an acceleration of 2 m/s2. The box of incline has a length of 4 m. The time taken by the particle to reach the bottom will be:
1. \(\frac89\sqrt3s\)
2. \(\frac98\sqrt3s\)
3. \(\frac43\sqrt{\frac{\sqrt3}{2}}s\)
4. \(\frac34\sqrt{\frac{\sqrt3}{2}}s\)