Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The energy of the highest energy photon of Balmer series of hydrogen spectrum is close to
(1) 13.6 eV             

(2) 3.4 eV

(3) 1.5 eV               

(4) 0.85 eV

Subtopic:  Spectral Series |
 76%
Level 2: 60%+
Hints

Which one of the relation is correct between time period and number of orbits while an electron is revolving in a orbit

(1) n2             

(2) 1n2

(3) n3             

(4) 1n

Subtopic:  Bohr's Model of Atom |
 83%
Level 1: 80%+
Hints

An electron changes its position from orbit n = 4 to the orbit n = 2 of an atom. The wavelength of the emitted radiation’s is (R = Rydberg’s constant)

(1) 16R             

(2) 163R

(3) 165R             

(4) 167R

Subtopic:  Bohr's Model of Atom |
 85%
Level 1: 80%+
Hints

If the energy of a hydrogen atom in nth orbit is En, then energy in the nth orbit of a singly ionized helium atom will be 

(1) 4En             

(2) En/4

(3) 2En             

(4) En/2

Subtopic:  Bohr's Model of Atom |
 77%
Level 2: 60%+
Hints

Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The ground state energy of hydrogen atom is – 13.6 eV. What is the potential energy of the electron in this state

1. 0 eV                       

2. – 27.2 eV

3. 1 eV                       

4. 2 eV

Subtopic:  Bohr's Model of Atom |
 83%
Level 1: 80%+
Hints

Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

As the electron in Bohr orbit of Hydrogen atom passes from state n = 2 to n = 1 , the kinetic energy K and potential energy U change as 

(1) K two-fold, U four-fold

(2) K four-fold, U two-fold

(3) K four-fold, U also four-fold

(4) K two-fold, U also two-fold

Subtopic:  Bohr's Model of Atom |
Level 3: 35%-60%
Hints

Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The magnetic moment μ of a revolving electron around the nucleus varies with principal quantum number n as

(1) μn            

(2) μ1/n

(3) μn2           

(4) μ1/n2

Subtopic:  Bohr's Model of Atom |
 64%
Level 2: 60%+
Hints
Links

Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Bohr's atom model assumes 

(1) The nucleus is of infinite mass and is at rest

(2) Electrons in a quantized orbit will not radiate energy

(3) Mass of electron remains constant

(4) All the above conditions

Subtopic:  Bohr's Model of Atom |
 75%
Level 2: 60%+
Hints

Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The ratio of the speed of the electrons in the ground state of hydrogen to the speed of light in vacuum is

1. 1/2                2. 2/137
3. 1/137            4. 1/237

Subtopic:  Bohr's Model of Atom |
 79%
Level 2: 60%+
Hints

Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
In a hypothetical Bohr hydrogen, the mass of the electron is doubled. What will be the energy \(E_0\) and the radius \(r_0\) of the first orbit?
\((a_0\) is the Bohr radius) 
1. \(E_0=-27.2 ~\text{eV};~r_0={a}_0 / 2\)
2. \(E_0=-27.2 ~\text{eV}; ~r_0={a}_0\)
3. \(E_0=-13.6~\text{eV} ; ~r_0={a}_0 / 2\)
4. \(E_0=-13.6 ~\text{eV}; ~r_0={a}_0\)

Subtopic:  Bohr's Model of Atom |
 56%
Level 3: 35%-60%
Hints
Links