A current is passed through two voltameters connected in series. The first voltmeter connected in series. The first voltmeter contains XSO4(aq) while the second voltmeter contains Y2SO4(aq). The relative atomic masses of X and Y are in the ratio of 2:1. The ration of the mass of X liberated to the mass of Y liberated is:
1. 1:1
2. 1:2
3. 2:1
4. none of these
At 25 °C molar conductance of 0.1 molar aqueous solution of ammonium hydroxide is 9.54 Ω-1 cm2 mol-1 and at infinite dilution its molar conductance is 238 Ω-1 cm2 mol-1. The degree of ionisation of ammonium hydroxide at the same concentration and temperature is :
1. | 2.080 % | 2. | 20.800 % |
3. | 4.008 % | 4. | 40.800 % |
Which is the correct representation for Nernst equation ?
1. \(E_{\mathrm{RP}}=E_{\mathrm{RP}}^{\circ}+\frac{0.059}{\mathrm{n}} \log \frac{[\text { oxidant }]}{[\text { reductant }]}\)
2. \(E_{\mathrm{OP}}=E_{\mathrm{OP}}^{\circ}-\frac{0.059}{\mathrm{n}} \log \frac{[\text { oxidant }]}{[\text { reductant }]}\)
3. \(E_{\mathrm{OP}}=E_{\mathrm{OP}}^{\circ}+\frac{0.059}{\mathrm{n}} \log \frac{[\text { reductant }]}{[\text { oxidant }]}\)
4. All of the above
When a copper wire is immersed in a solution of AgNO3, the colour of the solution becomes blue because copper:
1. Forms a soluble complex with \(AgNO_3\)
2. Is oxidised to \(Cu^{2+}\)
3. Is reduced to \(Cu^{2-}\)
4. Splits up into atomic form and dissolves
The specific conductance of a 0.1 M KCl solution at 23 °C is 0.012 Ω-1 cm-1 . The resistance of cells containing the solution at the same temperature was found to be 55 Ω. The cell constant will be:
1. | 0.142cm-1 | 2. | 0.66 cm-1 |
3. | 0.918 cm-1 | 4. | 1.12cm-1 |
Given below are the half-cell reactions,
Mn2+ + 2e-
Mn will be:
E0 for Fe2+ + 2e → Fe is -0.44 volt and E0 for Zn2+ + 2e→ Zn is -0.76 volt, thus:
1. Zn is more electropositive than Fe
2. Fe is more electropositive than Zn
3. Zn is more electronegative
4. none of the above
The voltage of the cell given below increases with:
Cell: Sn(s) + 2Ag+(aq) → Sn2+(aq) + 2Ag(s)
1. Increase in size of the silver rod.
2. Increase in the concentration of Sn2+ ions.
3. Increase in the concentration of Ag+ ions.
4. None of the above.
, the standard emf of the reaction
will be
1. 0.111V
2. 0.330V
3. 1.653V
4. 1.212V
The standard electrode potential for Sn4+/Sn2+ couple is +0.15 V and that for the Cr3+/Cr couple is -0.74 V. These two couples in their standard state are connected to make a cell. The cell potential will be:
1. | +0.89 V | 2. | +0.18 V |
3. | +1.83 V | 4. | +1.199 V |