When a spiral spring is stretched by suspending a load on it, the strain produced is called:
1. | Shearing |
2. | Longitudinal |
3. | Volume |
4. | shearing and longitudinal |
The Young's modulus of the material of a wire is and there is no transverse strain in it, then its modulus of rigidity will be
(1)
(2)
(3)
(4) None of the above
Modulus of rigidity of a liquid:
(1) Non zero constant
(2) Infinite
(3) Zero
(4) Can not be predicted
A cube of aluminium of sides 0.1 m is subjected to a shearing force of 100 N. The top face of the cube is displaced through 0.02 cm with respect to the bottom face. The shearing strain would be:
1. 0.02
2. 0.1
3. 0.005
4. 0.002
The upper end of a wire of radius 4 mm and length 100 cm is clamped and its other end is twisted through an angle of 30°. Then angle of shear is
(1)
(2)
(3)
(4)
A rod of length l and radius r is joined to a rod of length l/2 and radius r/2 of same material. The free end of small rod is fixed to a rigid base and the free end of larger rod is given a twist of , the twist angle at the joint will be
(a) (b)
(c) (d)
Shearing stress causes a change in-
(1) Length
(2) Breadth
(3) Shape
(4) Volume
To break a wire, a force of is required. If the density of the material is , then the length of the wire which will break by its own weight will be -
(a) 34 m (b) 30 m
(c) 300 m (d) 3 m
One end of a uniform wire of length L and of weight is attached rigidly to a point in the roof and a weight is suspended from its lower end. If S is the area of cross-section of the wire, the stress in the wire at a height 3L/4 from its lower end is
1.
2.
3.
4.
The strain-stress curves of three wires of different materials are shown in the figure. P, Q and R are the elastic limits of the wires. The figure shows that:
1. | Elasticity of wire P is maximum |
2. | Elasticity of wire Q is maximum |
3. | Tensile strength of R is maximum |
4. | None of the above is true |