A resistance of 300 Ω and an inductance of henry are connected in series to an ac voltage of 20 volts and a 200 Hz frequency. The phase angle between the voltage and current will be:
1.
2.
3.
4.
In a region of uniform magnetic induction B = 10–2 tesla, a circular coil of radius 30 cm and resistance π2 ohm is rotated about an axis that is perpendicular to the direction of B and which forms a diameter of the coil. If the coil rotates at 200 rpm the amplitude of the alternating current induced in the coil is :
(1) 4π2 mA
(2) 30 mA
(3) 6 mA
(4) 200 mA
The impedance of a circuit consists of 3 ohm resistance and 4 ohm reactance. The power factor of the circuit is :
(1) 0.4
(2) 0.6
(3) 0.8
(4) 1.0
The power factor of a good choke coil is:
(1) Nearly zero
(2) Exactly zero
(3) Nearly one
(4) Exactly one
L, C and R represent physical quantities inductance, capacitance and resistance respectively. The combination representing the dimension of frequency will be:
1. LC
2. (LC)–1/2
3.
4.
In an ac circuit, a resistance of R ohm is connected in series with an inductance L. If the phase angle between voltage and current is 45°, the value of inductive reactance will be:
1. | \(\frac{R}{4}\) |
2. | \(\frac{R}{2}\) |
3. | R |
4. | Cannot be found with the given data |
The phase difference between the current and voltage of LCR circuit in series combination at resonance is
(1) 0
(2) π/2
(3) π
(4) –π
In a series resonant circuit, the ac voltage across resistance R, inductance L and capacitance C are 5 V, 10 V and 10 V respectively. The ac voltage applied to the circuit will be
(1) 20 V
(2) 10 V
(3) 5 V
(4) 25 V
In a series LCR circuit, resistance R = 10Ω and the impedance Z = 20Ω. The phase difference between the current and the voltage is
(1) 30°
(2) 45°
(3) 60°
(4) 90°
In the circuit shown below, the ac source has voltage volts with ω = 2000 rad/sec.
The amplitude of the current is closest to:
1. 2 A
2. 3.3 A
3.
4.