The magnetic induction due to an infinitely long straight wire carrying a current \(i\) at a distance \(r\) from the wire is given by:
1. \( B =\dfrac{\mu_0}{4 \pi} \dfrac{2 i}{r} \)
2. \(B =\dfrac{\mu_0}{4 \pi} \dfrac{r}{2 i} \)
3. \(B =\dfrac{4 \pi}{\mu_0} \dfrac{2 i}{r} \)
4. \(B =\dfrac{4 \pi}{\mu_0} \dfrac{r}{2 i}\)
The magnetic induction at the centre O in the figure shown is:
1. 2.
3. 4.
A current \(i\) ampere flows in a circular arc of wire whose radius is \(R,\) which subtend an angle radian at its centre. The magnetic induction \(B\) at the centre is:
1. \(\frac{\mu_0i}{R}\)
2. \(\frac{\mu_0i}{2R}\)
3. \(\frac{2\mu_0i}{R}\)
4. \(\frac{3\mu_0i}{8R}\)
1. | \(3.33\times 10^{-9}\) Tesla |
2. | \(1.11\times 10^{-4}\) Tesla |
3. | \(3\times 10^{-3}\) Tesla |
4. | \(9\times 10^{-2}\) Tesla |
The electric charge in uniform motion produces :
1. | An electric field only |
2. | A magnetic field only |
3. | Both electric and magnetic field |
4. | Neither electric nor magnetic field |
A straight section PQ of a circuit lies along the X-axis from x= to x= and carries a steady current i. The magnetic field due to the section PQ at a point X = + a will be:
1. Proportional to a 2. Proportional to
3. Proportional to 4. Zero
An infinitely long straight conductor is bent into the shape as shown in the figure.
It carries a current of \(i\) amperes and the radius of the circular loop is \(r\) metres. What will be the magnetic induction at its centre?
1. \(\frac{\mu_{0}}{4 \pi} \frac{2 i}{r} \left( \pi + 1 \right)\)
2. \(\frac{\mu_{0}}{4 \pi} \frac{2 i}{r} \left(\pi - 1 \right)\)
3. zero
4. Infinite
A circular coil of radius R carries an electric current. The magnetic field due to the coil at a point on the axis of the coil located at a distance r from the centre of the coil, such that r >> R, varies as
1.
2.
3.
4.
In the figure shown, the magnetic induction at the centre of the arc due to the current in portion AB will be
1. 3.
2. 4. Zero
1. | At a distance \(\frac{d}{2}\) from any of the wires in any plane. |
2. | At a distance \(\frac{d}{3}\) from any of the wires in the horizontal plane. |
3. | Anywhere on the circumference of a vertical circle of radius \(d\) and centre halfway between the wires. |
4. | At points halfway between the wires in the horizontal plane. |