The pulleys and strings shown in the figure are smooth and of negligible mass. For the system to remain in equilibrium, the angle \(\theta\) should be:
1. \(0^\circ\)
2. \(30^\circ\)
3. \(45^\circ\)
4. \(60^\circ\)
A string of negligible mass going over a clamped pulley of mass m supports a block of mass M as shown in the figure. The force on the pulley by the clamp is given by:
1.
2.
3.
4.
A pulley fixed to the ceilling carries a string with blocks of mass m and 3 m attached to its ends. The masses of string and pulley are negligible. When the system is released, its centre of mass moves with what acceleration
(1) 0
(2) g/4
(3) g/2
(4) –g/2
A block B is placed on top of block A. The mass of block B is less than the mass of block A. Friction exists between the blocks, whereas the ground on which block A is placed is assumed to be smooth. A horizontal force F, increasing linearly with time begins to act on B. The acceleration aA and aB of blocks A and B respectively are plotted against t. The correctly plotted graph is:
1.
2.
3.
4.
In the figure given below, the position-time graph of a particle of mass 0.1 Kg is shown. The impulse at t = 2 sec is
(1) 0.2 kg m sec–1
(2) –0.2 kg m sec–1
(3) 0.1 kg m sec–1
(4) –0.4 kg m sec–1
The force-time (F – t) curve of a particle executing linear motion is as shown in the figure. The momentum acquired by the particle in time interval from zero to 8 second will be
(1) – 2 N-s
(2) + 4 N-s
(3) 6 N-s
(4) Zero
A body of 2 kg has an initial speed 5ms–1. A force acts on it for some time in the direction of motion. The force time graph is shown in figure. The final speed of the body.
(1) 9.25 ms–1
(2) 5 ms–1
(3) 14.25 ms–1
(4) 4.25 ms–1
A particle of mass m, initially at rest, is acted upon by a variable force F for a brief interval of time T. It begins to move with a velocity u after the force stops acting. F is shown in the graph as a function of time. The curve is an ellipse.
(1)
(2)
(3)
(4)
A body of mass 3kg is acted upon by a force which varies as shown in the graph below. The momentum acquired is given by
(1) Zero
(2) 5 N-s
(3) 30 N-s
(4) 50 N-s
The variation of momentum with the time of one of the bodies in a two-body collision is shown in fig. The instantaneous force is the maximum corresponding to the point:
1. P
2. Q
3. R
4. S