When forces F1, F2, F3 are acting on a particle of mass m such that F2 and F3 are mutually perpendicular, then the particle remains stationary. If the force F1 is now removed then the acceleration of the particle is
(1)
(2)
(3)
(4)
A false balance has equal arms. An object weighs X when placed in one pan and Y when placed in other pan, then the weight W of the object is equal to
(1)
(2)
(3)
(4)
The pulleys and strings shown in the figure are smooth and of negligible mass. For the system to remain in equilibrium, the angle \(\theta\) should be:
1. \(0^\circ\)
2. \(30^\circ\)
3. \(45^\circ\)
4. \(60^\circ\)
A string of negligible mass going over a clamped pulley of mass m supports a block of mass M as shown in the figure. The force on the pulley by the clamp is given by:
1.
2.
3.
4.
A pulley fixed to the ceilling carries a string with blocks of mass m and 3 m attached to its ends. The masses of string and pulley are negligible. When the system is released, its centre of mass moves with what acceleration
(1) 0
(2) g/4
(3) g/2
(4) –g/2
A block B is placed on top of block A. The mass of block B is less than the mass of block A. Friction exists between the blocks, whereas the ground on which block A is placed is assumed to be smooth. A horizontal force F, increasing linearly with time begins to act on B. The acceleration aA and aB of blocks A and B respectively are plotted against t. The correctly plotted graph is:
1.
2.
3.
4.
In the figure given below, the position-time graph of a particle of mass 0.1 Kg is shown. The impulse at t = 2 sec is
(1) 0.2 kg m sec–1
(2) –0.2 kg m sec–1
(3) 0.1 kg m sec–1
(4) –0.4 kg m sec–1
The force-time (F – t) curve of a particle executing linear motion is as shown in the figure. The momentum acquired by the particle in time interval from zero to 8 second will be
(1) – 2 N-s
(2) + 4 N-s
(3) 6 N-s
(4) Zero
A body of 2 kg has an initial speed 5ms–1. A force acts on it for some time in the direction of motion. The force time graph is shown in figure. The final speed of the body.
(1) 9.25 ms–1
(2) 5 ms–1
(3) 14.25 ms–1
(4) 4.25 ms–1
A particle of mass m, initially at rest, is acted upon by a variable force F for a brief interval of time T. It begins to move with a velocity u after the force stops acting. F is shown in the graph as a function of time. The curve is an ellipse.
(1)
(2)
(3)
(4)