Three blocks A, B and C weighing 1, 8 and 27 kg respectively are connected as shown in the figure with an inextensible string and are moving on a smooth surface. T3 is equal to 36 N. Then T2 is
(1) 18 N
(2) 9 N
(3) 3.375 N
(4) 1.25 N
Two bodies of mass 3 kg and 4 kg are suspended at the ends of massless string passing over a frictionless pulley. The acceleration of the system is (g = 9.8 m/s2)
(1) 4.9 m/s2
(2) 2.45 m/s2
(3) 1.4 m/s2
(4) 9.5 m/s2
Three solids of masses m1, m2 and m3 are connected with weightless string in succession and are placed on a frictionless table. If the mass m3 is dragged with a force T, the tension in the string between m2 and m3 is
(1)
(2)
(3)
(4)
Three blocks of masses m1, m2 and m3 are connected by massless strings as shown on a frictionless table. They are pulled with a force T3 = 40 N. If m1 = 10 kg, m2 = 6 kg and m3 4 kg, the tension T2 will be
(1) 20 N
(2) 40 N
(3) 10 N
(4) 32 N
A light string passes over a frictionless pulley. To one of its ends a mass of 6 kg is attached. To its other end a mass of 10 kg is attached. The tension in the thread will be
(1) 24.5 N
(2) 2.45 N
(3) 79 N
(4) 73.5 N
Two masses of 5kg and 10kg are connected to a pulley as shown. What will be the acceleration of the system (g = acceleration due to gravity)
(1) g
(2)
(3)
(4)
A block A of mass 7 kg is placed on a frictionless table. A thread tied to it passes over a frictionless pulley and carries a body B of mass 3 kg at the other end. The acceleration of the system is (given g = 10 ms–2)
(1) 100 ms–2
(2) 3 ms–2
(3) 10 ms–2
(4) 30 ms–2
Three blocks of masses 2 kg, 3 kg and 5 kg are connected to each other with light string and are then placed on a frictionless surface as shown in the figure. The system is pulled by a force F = 10 N, then tension T1 =
(1) 1N
(2) 5 N
(3) 8 N
(4) 10 N
A body of weight 2kg is suspended as shown in the figure. The tension T1 in the horizontal string (in kg wt) is
(1)
(2)
(3)
(4) 2
One end of a massless rope, which passes over a massless and frictionless pulley P is tied to a hook C while the other end is free. Maximum tension that the rope can bear is 360 N. with what value of minimum safe acceleration (in ms–2) can a monkey of 60 kg move down on the rope
(1) 16
(2) 6
(3) 4
(4) 8