A motorcyclist going round in a circular track at a constant speed has:
(1) constant linear velocity.
(2) constant acceleration.
(3) constant angular velocity.
(4) constant force.
A particle moves with constant angular velocity in a circle. During the motion its:
1. | Energy is conserved |
2. | Momentum is conserved |
3. | Energy and momentum both are conserved |
4. | None of the above is conserved |
Two bodies of mass 10 kg and 5 kg moving in concentric orbits of radii R and r such that their periods are the same. Then the ratio between their centripetal acceleration is
(1) R/r
(2) r/R
(3) R2/r2
(4) r2/R2
A particle is moving in a horizontal circle with constant speed. It has constant
(1) Velocity
(2) Acceleration
(3) Kinetic energy
(4) Displacement
The angular speed of a flywheel making 120 revolutions/minute is:
(1)
(2)
(3)
(4)
An electric fan has blades of length 30 cm as measured from the axis of rotation. If the fan is rotating at 1200 r.p.m, the acceleration of a point on the tip of the blade is about
(1) 1600 m/sec2
(2) 4740 m/sec2
(3) 2370 m/sec2
(4) 5055 m/sec2
The angular speed of seconds needle in a mechanical watch is:
(1) rad/s
(2) 2π rad/s
(3) π rad/s
(4) rad/s
What is the value of linear velocity if \(\overset{\rightarrow}{\omega} = 3\hat{i} - 4\hat{j} + \hat{k}\) and \(\overset{\rightarrow}{r} = 5\hat{i} - 6\hat{j} + 6\hat{k}\) :
1. | \(6 \hat{i}+2 \hat{j}-3 \hat{k} \) |
2. | \(-18 \hat{i}-13 \hat{j}+2 \hat{k} \) |
3. | \(4 \hat{i}-13 \hat{j}+6 \hat{k}\) |
4. | \(6 \hat{i}-2 \hat{j}+8 \hat{k}\) |
A particle moves with constant speed v along a circular path of radius r and completes the circle in time T. The acceleration of the particle is:
1.
2.
3.
4.
If ar and at represent radial and tangential accelerations, the motion of a particle will be uniformly circular if:
1. ar = 0 and at = 0
2. ar = 0 but at \(\neq\) 0
3. ar \(\neq\) 0 but at = 0
4. ar \(\neq\) 0 and at \(\neq\) 0