A particle moves along a straight line such that its displacement at any time t is given by metres. The velocity when the acceleration is zero is:
1. | 4 ms-1 | 2. | −12 ms−1 |
3. | 42 ms−1 | 4. | −9 ms−1 |
If a body starts from rest and travels 120 cm in the 6th second, then what is the acceleration
(1) 0.20 m/s2
(2) 0.027 m/s2
(3) 0.218 m/s2
(4) 0.03 m/s2
If a car at rest accelerates uniformly to a speed of 144 km/h in 20 s. Then it covers a distance of
(1) 20 m
(2) 400 m
(3) 1440 m
(4) 2880 m
The position \(x\) of a particle varies with time \(t\) as \(x=at^2-bt^3\). The acceleration of the particle will be zero at time \(t\) equal to:
1. \(\frac{a}{b}\)
2. \(\frac{2a}{3b}\)
3. \(\frac{a}{3b}\)
4. zero
If a train travelling at 72 kmph is to be brought to rest in a distance of 200 metres, then its retardation should be
(1) 20 ms–2
(2) 10 ms–2
(3) 2 ms–2
(4) 1 ms–2
The displacement of a particle starting from rest (at t = 0) is given by . The time in seconds at which the particle will attain zero velocity again, is
(1) 2
(2) 4
(3) 6
(4) 8
Two cars A and B are at rest at the same point initially. If A starts with uniform velocity of 40 m/sec and B starts in the same direction with a constant acceleration of 4 m/s2, then B will catch A after how much time?
(1) 10 sec
(2) 20 sec
(3) 30 sec
(4) 35 sec
The motion of a particle is described by the equation where a = 15 cm and b = 3 cm/s2. Its instantaneous velocity at time 3 sec will be
(1) 36 cm/sec
(2) 18 cm/sec
(3) 16 cm/sec
(4) 32 cm/sec
A body travels for 15 sec starting from rest with constant acceleration. If it travels distances S1, S2 and S3 in the first five seconds, second five seconds and next five seconds respectively the relation between S1, S2 and S3 is
(1)
(2)
(3)
(4)
A body is moving according to the equation where x = displacement and a, b and c are constants. The acceleration of the body is
(1)
(2)
(3)
(4)