The ionisation energy of hydrogen atom is 13.6 eV, the ionisation energy of helium atom would be [1988]
1. 13.6 eV
2. 27.2 eV
3. 6.8 eV
4. 54.4 eV
The photon radiated from hydrogen corresponding to the second line of Lyman series is absorbed by a hydrogen-like atom X in the second excited state. As a result the hydrogen-like atom X makes a transition to orbit. Then:
1. X =
2. X = , n = 6
3. X =
4. X = , n = 9
If an electron in an hydrogen atom jumps from an orbit to an orbit with level , the frequency of the emitted radiation is
1.
2. v =
3. v =
4. v =
The wavenumber of a photon in the Brackett series of a hydrogen atom is . What is the quantum number of the electron that has transited from the orbit?
1. 5
2. 6
3. 4
4. 7
In an experiment to determine the e/m value for an electron using Thomson's method the electrostatic deflection plates were 0.01 m apart and had a potential difference of 200 volts applied. Then the electric field strength between the plates is
1.
2.
3.
4.
Hydrogen 1H1, Deuterium 1H2, singly ionised helium (2He4)+, and doubly ionised lithium (3Li6)++ all have one electron around the nucleus. Consider an electron transition from n = 2 to n = 1. If the wavelengths of emitted radiations are λ1 ,λ2 ,λ3 and λ4 respectively, then approximately which one of the following is correct?
1. | \(4 \lambda_1=2 \lambda_2=2 \lambda_3=\lambda_4\) |
2. | \( \lambda_1=2 \lambda_2=2 \lambda_3=\lambda_4\) |
3. | \( \lambda_1=\lambda_2=4 \lambda_3=9\lambda_4\) |
4. | \( \lambda_1=2\lambda_2=3 \lambda_3=\lambda_4\) |
To explain his theory, Bohr used
1. conservation of linear momentum
2. conservation of angular momentum
3. conservation of quantum frequency
4. conservation of energy
The ionization energy of 10 times ionized sodium atom is:
1. 13.6 eV
2.
3.
4.
The ionisation potential of helium atom is 24.6 volt, the energy required to ionise it will be
1. 24.6 eV
2. 24.6 volt
3. 13.6 volt
4.13..6 eV
When hydrogen atom is in its first excited level, its radius is [1997]
1. four times, its ground state radius
2. twice, its ground state radius
3. same as its ground state radius
4. half of its ground state radius