In free space, a rifle of mass M shoots a bullet of mass m at a stationary block of mass M at a distance D away from it. When the bullet has moved through a distance d towards the block, the centre of mass of the bullet - block system is at a distance of
1. from the bullet
2. from the block
3. from the block
4. from the bullet
Blocks A and B are resting on a smooth horizontal surface given equal speeds of 2 m/s in the opposite sense as shown in the figure.
At t = 0, the position of blocks are shown, then the coordinates of centre of mass at t = 3s will be
1. (1, 0)
2. (3, 0)
3. (5, 0)
4. (2.25, 0)
A wheel is at rest. Its angular velocity increases uniformly and becomes 80 rad/s after 5 s. The total angular displacement is
1. 800 rad
2. 400 rad
3. 200 rad
4. 100 rad
Moment of inertia of an object does not depend upon
1. mass of object
2. mass distribution
3. angular velocity
4. axis of rotation
A force is acting on a point . The torque acting about a point is
1. 0
2.
2.
4.
A thin uniform circular disc of mass M and radius R is rotating in a horizontal plane about an axis passing through its center and perpendicular to its plane with an angular velocity . Another disc of the same dimensions but of mass is placed gently on the first disc co-axially. The angular velocity of the system will be:
1.
2.
3.
4.
When a torque acting upon a system is zero, then which of the following will be constant
1. force
2. Linear momentum
3. Angular momentum
4. Linear impulse
Consider a system of two particles having masses . If the particle of mass is pushed towards the center of mass of particles through a distance, by what distance would be the particle of the mass move so as to keep the center of mass of particles at the original position?
1.
2.
3. d
4.
A wheel whose moment of inertia is 12 has an initial angular velocity of 40 rad/sec. A constant torque of 20 Nm acts on the wheel. The time in which the wheel is accelerated to 100 rad/sec is
1. 72 seconds
2. 16 seconds
3. 8 seconds
4. 36 seconds