There is a simple pendulum hanging from the ceiling of a lift. When the lift is stand still, the time period of the pendulum is T. If the resultant acceleration becomes g/4, then the new time period of the pendulum is
(1) 0.8 T
(2) 0.25 T
(3) 2 T
(4) 4 T
A man measures the period of a simple pendulum inside a stationary lift and finds it to be T sec. If the lift accelerates upwards with an acceleration , then the period of the pendulum will be
(1) T
(2)
(3)
(4)
The bob of a pendulum of length l is pulled aside from its equilibrium position through an angle and then released. The bob will then pass through its equilibrium position with a speed v, where v equals
(1)
(2)
(3)
(4)
In a simple pendulum, the period of oscillation T is related to length of the pendulum l as:
1. = constant
2. = constant
3. = constant
4. = constant
A pendulum has time period T. If it is taken on to another planet having acceleration due to gravity half and mass 9 times that of the earth, then its time period on the other planet will be:
1. | \(\sqrt{\mathrm{T}} \) | 2. | \(T \) |
3. | \(\mathrm{T}^{1 / 3} \) | 4. | \(\sqrt{2} \mathrm{~T}\) |