(a) | the distance between the objective and eyepiece is \(20.02\) m. |
(b) | the magnification of the telescope is \(-1000\). |
(c) | the image of the planet is erect and diminished. |
(d) | the aperture of the eyepiece is smaller than that of objective. |
1. | (a), (b) and (c) |
2. | (b), (c) and (d) |
3. | (c), (d) and (a) |
4. | (a), (b) and (d) |
In an astronomical telescope in normal adjustment, a straight line of length \(L\) is drawn on the inside part of the objective lens. The eye-piece forms a real image of this line. The length of this image is \(l.\) The magnification of the telescope is:
1. \(\frac{L}{l}+1\)
2. \(\frac{L}{l}-1\)
3. \(\frac{L+1}{l-1}\)
4. \(\frac{L}{l}\)
An astronomical refracting telescope will have large angular magnification and high angular resolution when it has an objective lens of:
1. | small focal length and large diameter. |
2. | large focal length and small diameter. |
3. | large focal length and large diameter. |
4. | small focal length and small diameter. |
An astronomical telescope has an objective and eyepiece of focal lengths \(40\) cm and \(4\) cm respectively. To view an object \(200\) cm away from the objective, the lenses must be separated by a distance:
1. \(46.0\) cm
2. \(50.0\) cm
3. \(54.0\) cm
4. \(37.3\) cm