The position of a particle in a rectangular co-ordinate system is \((3, 2, 5)\). Then its position vector will be:
1. \(5\hat i + 6\hat j + 2\hat k\)
2. \(3\hat i + 2\hat j + 5\hat k\)
3. \(5\hat i + 3\hat j + 2\hat k\)
4. None of these

Subtopic:  Scalars & Vectors |
 92%
From NCERT
Hints
Links

A scalar quantity is one that:

1. is conserved in a process.
2. will never accept negative values.
3. must be dimensionless.
4. has the same value for observers with different orientations of axes.

Subtopic:  Scalars & Vectors |
 61%
From NCERT
Hints
Links

If \(\overrightarrow{a}\) is a vector and \(x\) is a non-zero scalar, then which of the following is correct?

1. \(x\overrightarrow{a}\) is a vector in the direction of \(\overrightarrow{a}\).
2. \(x\overrightarrow{a}\) is a vector collinear to \(\overrightarrow{a}\).
3. \(x\overrightarrow{a}\) and \(\overrightarrow{a}\) have independent directions.
4. \(x\overrightarrow{a}\) is a vector perpendicular to \(\overrightarrow{a}\).
Subtopic:  Scalars & Vectors |
From NCERT
Hints
Links

If \(\overrightarrow {A}= 2\hat i + 4\hat j- 5\hat k,\) then the direction cosines of the vector are:

(direction cosines (or directional cosines) of a vector are the cosines of the angles between the vector and the three \(+\)ve coordinate axes.)
1. \(\frac{2}{\sqrt{45}}, \frac{4}{\sqrt{45}}~\text{and}~\frac{-5}{\sqrt{45}}\)
2. \(\frac{1}{\sqrt{45}}, \frac{2}{\sqrt{45}}~\text{and}~\frac{3}{\sqrt{45}}\)
3. \(\frac{4}{\sqrt{45}}, 0~\text{and}~\frac{4}{\sqrt{45}}\)
4. \(\frac{3}{\sqrt{45}}, \frac{2}{\sqrt{45}}~\text{and}~\frac{5}{\sqrt{45}}\)

Subtopic:  Resolution of Vectors |
 88%
From NCERT
Hints
Links

A force \(F\) applied at a \(30^\circ\) angle to the \(x \)-axis has the following \(X\) and \(Y\) components:
1. \(\frac{F}{\sqrt{2}}, F\)
2. \(\frac{F}{2}, \frac{\sqrt{3}}{2}F\)
3. \(\frac{\sqrt{3}}{2}F, \frac{1}{2}F\)
4. \(F , \frac{F}{\sqrt{2}}\)

Subtopic:  Resolution of Vectors |
 79%
From NCERT
Hints
Links

A child pulls a box with a force of \(200~\text{N}\) at an angle of \(60^{\circ}\) above the horizontal. Then the horizontal and vertical components of the force will be:
              

1. \(100~\text{N}, ~175~\text{N}\)
2. \(86.6~\text{N}, ~100~\text{N}\)
3. \(100~\text{N}, ~86.6~\text{N}\)
4. \(100~\text{N}, ~0~\text{N}\)

Subtopic:  Resolution of Vectors |
 70%
From NCERT
Hints
Links

A force is \(60^{\circ}\) inclined to the horizontal. If its rectangular component in the horizontal direction is \(50\) N, then the magnitude of the force in the vertical direction is:

1. \(25\) N 2. \(75\) N
3. \(87\) N 4. \(100\) N
Subtopic:  Resolution of Vectors |
 61%
From NCERT
Hints
Links

Figure shows the orientation of two vectors \(u\) and \(v\) in the XY plane.
 If \(u = a\hat i + b\hat j\) and \(v = p\hat i + q\hat j\)


Which of the following is correct?

1. \(a\) and \(p\) are positive while \(b\) and \(q\) are negative
2. \(a, p,\) and \(b\) are positive while \(q\) is negative
3. \(a,q,\) and \(b\) are positive while \(p\) is negative
4. \(a, b, p,\) and \(q\) are all positive
Subtopic:  Resolution of Vectors |
 57%
From NCERT
Hints
Links

A certain vector in the xy-plane has an x-component of \(4\) m and a y-component of \(10\) m. It is then rotated in the xy-plane so that its x-component is doubled. Then, its new y-component will be: (approximately)
1. \(20\) m
2. \(7.2\) m
3. \(5.0\) m
4. \(4.5\) m
Subtopic:  Resolution of Vectors |
 52%
From NCERT
Hints
Links

If \(\left|\overrightarrow {v_1}+\overrightarrow {v_2}\right|= \left|\overrightarrow {v_1}-\overrightarrow {v_2}\right|\) and \(\overrightarrow {v_1}\) and \(\overrightarrow {v_2}\) are non-zero vectors, then:
1. \(\overrightarrow {v_1}\) is parallel to \(\overrightarrow {v_2}\)
2. \(\overrightarrow {v_1} = \overrightarrow {v_2}\)
3. \(\overrightarrow {v_1}\) and \(\overrightarrow {v_2}\) are mutually perpendicular 
4. \(\left|\overrightarrow {v_1}\right|= \left|\overrightarrow {v_2}\right|\)

Subtopic:  Resultant of Vectors |
 78%
From NCERT
Hints
Links