Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
A student measured the diameter of a small steel ball using a screw gauge of least count \(0.001\) cm. The main scale reading is \(5\) mm and zero of circular scale division coincides with \(25\) divisions above the reference level. If the screw gauge has a zero error of \(-0.004\) cm, the correct diameter of the ball is:
1. \(0.521\) cm 2. \(0.525\) cm
3. \(0.053\) cm 4. \(0.529\) cm
Subtopic:  Measurement & Measuring Devices |
 66%
Level 2: 60%+
NEET - 2018
Hints
Links

Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A physical quantity of the dimensions of length that can be formed out of \(c, G,~\text{and}~\dfrac{e^2}{4\pi\varepsilon_0}\)is [\(c\) is the velocity of light, \(G\) is the universal constant of gravitation and \(e\) is charge]:
1. \(c^2\left[G \dfrac{e^2}{4 \pi \varepsilon_0}\right]^{\dfrac{1}{2}}\)
2. \(\dfrac{1}{c^2}\left[\dfrac{e^2}{4 G \pi \varepsilon_0}\right]^{\dfrac{1}{2}}\)
3. \(\dfrac{1}{c} G \dfrac{e^2}{4 \pi \varepsilon_0}\)
4. \(\dfrac{1}{c^2}\left[G \dfrac{e^2}{4 \pi \varepsilon_0}\right]^{\dfrac{1}{2}}\)

Subtopic:  Dimensions |
 56%
Level 3: 35%-60%
NEET - 2017
Hints
Links

Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Planck's constant (\(h\)), speed of light in the vacuum (\(c\)), and Newton's gravitational constant (\(G\)) are the three fundamental constants. Which of the following combinations of these has the dimension of length?

1. \(\dfrac{\sqrt{hG}}{c^{3/2}}\) 2. \(\dfrac{\sqrt{hG}}{c^{5/2}}\)
3. \(\dfrac{\sqrt{hG}}{G}\) 4. \(\dfrac{\sqrt{Gc}}{h^{3/2}}\)
Subtopic:  Dimensions |
 71%
Level 2: 60%+
NEET - 2016
Hints
Links