1. | \(0\) | 2. | \(2\) weber |
3. | \(0.5\) weber | 4. | \(1\) weber |
In a coil of resistance \(10\) \(\Omega\), the induced current developed by changing magnetic flux through it is shown in the figure as a function of time. The magnitude of change in flux through the coil in Weber is:
1. \(2\)
2. \(6\)
3. \(4\)
4. \(8\)
A coil of resistance \(400~\Omega\) is placed in a magnetic field. The magnetic flux \(\phi~\text{(Wb)}\) linked with the coil varies with time \(t~\text{(s)}\) as \(\phi=50t^{2}+4.\) The current in the coil at \(t=2~\text{s}\) is:
1. \(0.5~\text{A}\)
2. \(0.1~\text{A}\)
3. \(2~\text{A}\)
4. \(1~\text{A}\)