Given below are two statements:
Assertion (A): | Position-time graph of a stationary object is a straight line parallel to the time axis. |
Reason (R): | For a stationary object, the position does not change with time. |
1. | Both (A) and (R) are true and (R) is the correct explanation of (A). |
2. | Both (A) and (R) are true but (R) is not the correct explanation of (A). |
3. | (A) is true but (R) is false. |
4. | Both (A) and (R) are false. |
A particle moves along a path \(ABCD\) as shown in the figure. The magnitude of the displacement of the particle from \(A\) to \(D\) is:
1. m
2. \(10\) m
3. m
4. \(15\) m
A drunkard walking in a narrow lane takes \(5\) steps forward and \(3\) steps backward, followed again by \(5\) steps forward and \(3\) steps backward, and so on. Each step is \(1\) m long and requires \(1\) s. There is a pit on the road \(13\) m away from the starting point. The drunkard will fall into the pit after:
1. \(37\) s
2. \(31\) s
3. \(29\) s
4. \(33\) s
If a body travels some distance in a given time interval, then for that time interval, its:
1. | Average speed ≥ |Average velocity| |
2. | |Average velocity| ≥ Average speed |
3. | Average speed < |Average velocity| |
4. | |Average velocity| must be equal to average speed. |
A car moves from \(\mathrm{X}\) to \(\mathrm{Y}\) with a uniform speed \(\mathrm{v_u}\) and returns to \(\mathrm{X}\) with a uniform speed \(\mathrm{v_d}.\) The average speed for this round trip is:
1.
2.
3.
4.
The figure gives the \((\mathrm{x-t})\) plot of a particle in a one-dimensional motion. Three different equal intervals of time are shown. The signs of average velocity for each of the intervals \(1,\) \(2\) & \(3,\) respectively are:
1. | \(-,-,+\) |
2. | \(+,-,+\) |
3. | \(-,+,+\) |
4. | \(+,+,-\) |
The coordinate of an object is given as a function of time by , where x is in metres and t is in seconds. Its average velocity over the interval t=0 to t=4 is will be:
1. 5 m/s
2. -5 m/s
3. 11 m/s
4. -11 m/s
A particle moving in a straight line covers half the distance with speed of 3 m/s. The other half of the distance is covered in two equal time intervals with speed of 4.5 m/s and 7.5 m/s respectively. The average speed of the particle during this motion is:
1. 4.0 m/s
2. 5.0 m/s
3. 5.5 m/s
4. 4.8 m/s
The displacement \((x)\) of a point moving in a straight line is given by; \(x=8t^2-4t.\) Then the velocity of the particle is zero at:
1. | \(0.4\) s | 2. | \(0.25\) s |
3. | \(0.5\) s | 4. | \(0.3\) s |
If the velocity of a particle is \(\mathrm{v}=\mathrm{At}+\mathrm{Bt^{2}},\) where \(\mathrm{A}\) and \(\mathrm{B}\) are constants, then the distance travelled by it between \(1\) s and \(2\) s is:
1.
2.
3.
4.