Given below are two statements:
Assertion (A): | Position-time graph of a stationary object is a straight line parallel to the time axis. |
Reason (R): | For a stationary object, the position does not change with time. |
1. | Both (A) and (R) are true and (R) is the correct explanation of (A). |
2. | Both (A) and (R) are true but (R) is not the correct explanation of (A). |
3. | (A) is true but (R) is false. |
4. | Both (A) and (R) are false. |
Assertion (A): | Displacement of a body may be zero when distance travelled by it is not zero. |
Reason (R): | The displacement is the longest distance between initial and final position. |
1. | Both (A) and (R) are true and (R) is the correct explanation of (A). |
2. | Both (A) and (R) are true but (R) is not the correct explanation of (A). |
3. | (A) is true but (R) is false. |
4. | Both (A) and (R) are false. |
A car moves with a speed of \(60\) km/h for \(1\) hour in the east direction and with the same speed for \(30\) min in the south direction. The displacement of the car from the initial position is:
1. \(60\) km
2. \(30 \sqrt{2}\) km
3. \(30 \sqrt{5}\) km
4. \(60 \sqrt{2}\) km
A particle moves along a path \(ABCD\) as shown in the figure. The magnitude of the displacement of the particle from \(A\) to \(D\) is:
1. m
2. \(10\) m
3. m
4. \(15\) m
A drunkard walking in a narrow lane takes \(5\) steps forward and \(3\) steps backward, followed again by \(5\) steps forward and \(3\) steps backward, and so on. Each step is \(1\) m long and requires \(1\) s. There is a pit on the road \(13\) m away from the starting point. The drunkard will fall into the pit after:
1. \(37\) s
2. \(31\) s
3. \(29\) s
4. \(33\) s
The displacement x of a particle moving in one dimension under the action of a constant force is related to time t by the equation , where x is in metres and t is in seconds. What is the displacement of the particle from t = 0 s to t = 6 s?
1. 0
2. 12 m
3. 6 m
4. 18 m
If a body travels some distance in a given time interval, then for that time interval, its:
1. | Average speed ≥ |Average velocity| |
2. | |Average velocity| ≥ Average speed |
3. | Average speed < |Average velocity| |
4. | |Average velocity| must be equal to average speed. |
A car moves from \(\mathrm{X}\) to \(\mathrm{Y}\) with a uniform speed \(\mathrm{v_u}\) and returns to \(\mathrm{X}\) with a uniform speed \(\mathrm{v_d}.\) The average speed for this round trip is:
1.
2.
3.
4.
The figure gives the \((\mathrm{x-t})\) plot of a particle in a one-dimensional motion. Three different equal intervals of time are shown. The signs of average velocity for each of the intervals \(1,\) \(2\) & \(3,\) respectively are:
1. | \(-,-,+\) |
2. | \(+,-,+\) |
3. | \(-,+,+\) |
4. | \(+,+,-\) |
A vehicle travels half the distance \(\mathrm{L}
\) with speed \(\mathrm{v_1}\) and the other half with speed \(\mathrm{v_2},\) then its average speed is:
1.
2.
3.
4.