A particle of unit mass undergoes one-dimensional motion such that its velocity varies according to where and \(\mathrm{n}\) are constants and \(\mathrm{x}\) is the position of the particle. The acceleration of the particle as a function of \(\mathrm{x}\) is given by:
1.
2.
3.
4.
A particle is moving such that its position coordinates (x, y) are (2 m, 3 m) at time \(t=0,\) (6 m,7 m) at time \(t=2\) s, and (13 m, 14 m) at time \(t=\) 5 s. The average velocity vector \(\vec{v}_{avg}\) from \(t=\) 0 to \(t=\) 5 s is:
1. \({1 \over 5} (13 \hat{i} + 14 \hat{j})\)
2. \({7 \over 3} (\hat{i} + \hat{j})\)
3. \(2 (\hat{i} + \hat{j})\)
4. \({11 \over 5} (\hat{i} + \hat{j})\)
A stone falls freely under gravity. It covers distances \(h_1,~h_2\) and \(h_3\) in the first \(5\) seconds, the next \(5\) seconds and the next \(5\) seconds respectively. The relation between \(h_1,~h_2\) and \(h_3\) is:
1. | \(h_1=\frac{h_2}{3}=\frac{h_3}{5}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) |
2. | \(h_2=3h_1\) and \(h_3=3h_2\) |
3. | \(h_1=h_2=h_3\) |
4. | \(h_1=2h_2=3h_3\) |
A particle has initial velocity \(\left(2 \hat{i} + 3 \hat{j}\right)\) and acceleration \(\left(0 . 3 \hat{i} + 0 . 2 \hat{j}\right)\). The magnitude of velocity after 10 sec will be:
1. \(9 \sqrt{2} units\)
2. \(5 \sqrt{2} units\)
3. 5 units
4. 9 unit
The motion of a particle along a straight line is described by the equation \(x = 8+12t-t^3\) where \(x \) is in meter and \(t\) in seconds. The retardation of the particle, when its velocity becomes zero, is:
1. \(24\) ms-2
2. zero
3. \(6\) ms-2
4. \(12\) ms-2
1. | 20 m/s | 2. | 40 m/s |
3. | 5 m/s | 4. | 10 m/s |
A particle covers half of its total distance with speed ν1 and the rest half distance with speed ν2.
Its average speed during the complete journey is:
1.
2.
3.
4.
A ball is dropped from a high-rise platform at t = 0 starting from rest. After 6 seconds, another ball is thrown downwards from the same platform with speed v. The two balls meet after 18 seconds. What is the value of v?
1. | 75 ms-1 | 2. | 55 ms-1 |
3. | 40 ms-1 | 4. | 60 ms-2 |
A particle moves a distance \(x\) in time \(t\) according to equation \(x=(t+5)^{-1}.\) The acceleration of the particle is proportional to:
1. (velocity)\(3/2\)
2. (distance)\(2\)
3. (distance)\(-2\)
4. (velocity)\(2/3\)