1. | both units and dimensions |
2. | units but no dimensions |
3. | dimensions but no units |
4. | no units and no dimensions |
1. | wavelength of light |
2. | size of an atom |
3. | astronomical distance |
4. | height of a building |
The angle of \(1'\) (minute of an arc) in radian is nearly equal to:
1. \(2.91 \times 10^{-4} ~\mathrm{rad} \)
2. \(4.85 \times 10^{-4} ~\mathrm{rad} \)
3. \(4.80 \times 10^{-6} ~\mathrm{rad} \)
4. \(1.75 \times 10^{-2} ~\mathrm{rad}\)
The angle of \(1^\circ\) (degree) will be equal to:
(Use \(360^\circ=2\pi\) rad)
1. \(1.034\times10^{-3}\) rad
2. \(1.745\times10^{-2}\) rad
3. \(1.524\times10^{-2}\) rad
4. \(1.745\times10^{3}\) rad
The sum of the numbers \(436.32,227.2,\) and \(0.301\) in the appropriate significant figures is:
1. | \( 663.821 \) | 2. | \( 664 \) |
3. | \( 663.8 \) | 4. | \(663.82\) |
The radius of a circle is stated as \(2.12\) cm. Its area should be written as:
1. \(14\mathrm{~cm^2}\)
2. \(14.1\mathrm{~cm^2}\)
3. \(14.11\mathrm{~cm^2}\)
4. \(14.1124\mathrm{~cm^2}\)
The mass and volume of a body are \(4.237~\mathrm{g}\) and \(2.5~\mathrm{cm^3}\), respectively. The density of the material of the body in correct significant figures will be:
1. \(1.6048~\mathrm{g~cm^{-3}}\)
2. \(1.69~\mathrm{g~cm^{-3}}\)
3. \(1.7~\mathrm{g~cm^{-3}}\)
4. \(1.695~\mathrm{g~cm^{-3}}\)
The numbers \(2.745\) and \(2.735\) on rounding off to \(3\) significant figures will give respectively,
1. | \(2.75\) and \(2.74\) | 2. | \(2.74\) and \(2.73\) |
3. | \(2.75\) and \(2.73\) | 4. | \(2.74\) and \(2.74\) |
Each side of a cube is measured to be \(7.203\) \(\mathrm{m}.\) What are the total surface area and the volume respectively of the cube to appropriate significant figures?
1. | \(373.7~\mathrm{m^2}\) and \(311.3~\mathrm{m^3}\) |
2. | \(311.3~\mathrm{m^2}\) and \(373.7~\mathrm{m^3}\) |
3. | \(311.2992~\mathrm{m^2}\) and \(373.7147~\mathrm{m^3}\) |
4. | \(373.7147~\mathrm{m^2}\) and \(311.2992~\mathrm{m^3}\) |