1. | stress and energy |
2. | force and work |
3. | torque and work |
4. | velocity gradient and time |
If \(u_1\) and \(u_2\) are the units selected in two systems of measurement and \(n_1\) and \(n_2\) are their numerical values, then:
1. | \(n_1u_1=n_2u_2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) |
2. | \(n_1u_1+n_2u_2=0\) |
3. | \(n_1n_2=u_1u_2\) |
4. | \((n_1+u_1)=(n_2+u_2)\) |
The velocity v of a particle at time \(t\) is given by \(\mathrm{v}=\mathrm{at}+\frac{\mathrm{b}}{\mathrm{t}+\mathrm{c}}\). The dimensions of \(\mathrm{a}\), \(\mathrm{b}\), and \(\mathrm{c}\) are respectively:
1. \( {\left[\mathrm{LT}^{-2}\right],[\mathrm{L}],[\mathrm{T}]} \)
2. \( {\left[\mathrm{L}^2\right],[\mathrm{T}] \text { and }\left[\mathrm{LT}^2\right]} \)
3. \( {\left[\mathrm{LT}^2\right],[\mathrm{LT}] \text { and }[\mathrm{L}]} \)
4. \( {[\mathrm{L}],[\mathrm{LT}], \text { and }\left[\mathrm{T}^2\right]}\)
If the dimensions of a physical quantity are given by then the physical quantity will be:
1. | pressure if a =1, b =-1, c =-2 |
2. | velocity if a =1, b =0, c =-1 |
3. | acceleration if a =1, b =1,c =-2 |
4. | force if a =0, b =-1, c =-2 |
The universal gravitational constant is dimensionally represented as:
1.
2.
3.
4.
Column I | Column II | ||
(A) | Dimensions of \(A\) | (P) | \([M^0L^0T^{-1}]\) |
(B) | Dimensions of \(k_{1}\) | (Q) | \([M^0L^{-1}T^{-1}]\) |
(C) | Dimensions of \(k_{2}\) | (R) | \([MLT^{-2}]\) |
(D) | Dimensions of \(k_{1}k_{2}\) | (S) | \([M^0L^{-1}T^{0}]\) |
1. | A → R, B → S, C → P, D → Q |
2. | A → P, B → Q, C → R, D → S |
3. | A → R, B → P, C → Q, D → S |
4. | A → S, B → P, C → Q, D → R |
1. | \({\large\frac{\text{force}}{\text{volume}}},\text{ surface tension}\) |
2. | \(\text{torque},\text{ pressure}\times\text{volume}\) |
3. | \(\text{specific heat}\times\text{mass},\text{ energy}\) |
4. | \({\large\frac{\text{pressure}}{\text{acceleration}}},\text{ density}\) |
The dimensional formula for impulse is:
1. \([MLT^{-2}]\)
2. \([MLT^{-1}]\)
3. \([ML^2T^{-1}]\)
4. \([M^2LT^{-1}]\)