If \(u_1\) and \(u_2\) are the units selected in two systems of measurement and \(n_1\) and \(n_2\) are their numerical values, then:
1. | \(n_1u_1=n_2u_2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) |
2. | \(n_1u_1+n_2u_2=0\) |
3. | \(n_1n_2=u_1u_2\) |
4. | \((n_1+u_1)=(n_2+u_2)\) |
The velocity v of a particle at time \(t\) is given by \(\mathrm{v}=\mathrm{at}+\frac{\mathrm{b}}{\mathrm{t}+\mathrm{c}}\). The dimensions of \(\mathrm{a}\), \(\mathrm{b}\), and \(\mathrm{c}\) are respectively:
1. \( {\left[\mathrm{LT}^{-2}\right],[\mathrm{L}],[\mathrm{T}]} \)
2. \( {\left[\mathrm{L}^2\right],[\mathrm{T}] \text { and }\left[\mathrm{LT}^2\right]} \)
3. \( {\left[\mathrm{LT}^2\right],[\mathrm{LT}] \text { and }[\mathrm{L}]} \)
4. \( {[\mathrm{L}],[\mathrm{LT}], \text { and }\left[\mathrm{T}^2\right]}\)
If the dimensions of a physical quantity are given by then the physical quantity will be:
1. | pressure if a =1, b =-1, c =-2 |
2. | velocity if a =1, b =0, c =-1 |
3. | acceleration if a =1, b =1,c =-2 |
4. | force if a =0, b =-1, c =-2 |
The dimensional formula for impulse is:
1. \([MLT^{-2}]\)
2. \([MLT^{-1}]\)
3. \([ML^2T^{-1}]\)
4. \([M^2LT^{-1}]\)
In the relation, \(y=a \cos (\omega t-k x)\), the dimensional formula for \(k\) will be:
1. \( {\left[M^0 L^{-1} T^{-1}\right]} \)
2. \({\left[M^0 L T^{-1}\right]} \)
3. \( {\left[M^0 L^{-1} T^0\right]} \)
4. \({\left[M^0 L T\right]}\)
When units of mass, length, and time are taken as 10 kg, 60 m, and 60 s respectively, the new unit of energy becomes \(x\) times the initial SI unit of energy. The value of \(x\) will be:
1. 10
2. 20
3. 60
4. 120
If the units of force and length, each is increased by four times, then the unit of energy increases by:
1. | 16 times | 2. | 8 times |
3. | 2 times | 4. | 4 times |
For \(10^{(at+3)}\), the dimensions of \(a\) will be:
1.
2.
3.
4. None of these