If the radius of \(\mathrm{Al}\) nucleus is taken to be \(\mathrm{R}_{\mathrm{Al}},\) then the radius of nucleus is near:
1.
The Binding energy per nucleon of \(^{7}_{3}Li\) and \(^{4}_{2}He\) nucleon are \(5.60~\text{MeV}\) and \(7.06~\text{MeV}\), respectively. In the nuclear reaction \(^{7}_{3}Li + ^{1}_{1}H \rightarrow ^{4}_{2}He + ^{4}_{2}He +Q\), the value of energy \(Q\) released is:
1. \(19.6~\text{MeV}\)
2. \(-2.4~\text{MeV}\)
3. \(8.4~\text{MeV}\)
4. \(17.3~\text{MeV}\)
1. | decrease continuously with mass number. |
2. | first decreases and then increases with an increase in mass number. |
3. | first increases and then decreases with an increase in mass number. |
4. | increases continuously with mass number. |
If the nuclear radius of \(^{27}\text{Al}\) is \(3.6\) Fermi, the approximate nuclear radius of \(^{64}\text{Cu}\) in Fermi is:
1. \(2.4\)
2. \(1.2\)
3. \(4.8\)
4. \(3.6\)
The power obtained in a reactor using \(U^{235}\) disintegration is \(1000~\text{kW}\). The mass decay of \(U^{235}\) per hour is approximately equal to:
1. \(20~\mu\text{g}\)
2. \(40~\mu\text{g}\)
3. \(1~\mu\text{g}\)
4. \(10~\mu\text{g}\)
1. | atoms get ionized at high temperature |
2. | kinetic energy is high enough to overcome the Coulomb repulsion between nuclei |
3. | molecules break up at high temperature |
4. | nuclei break up at high temperature |
A nucleus \({ }_{{n}}^{{m}} {X}\) emits one \(\alpha\text -\text{particle}\) and two \(\beta\text- \text{particle}\) The resulting nucleus is:
1. \(^{m-}{}_n^6 Z \)
2. \(^{m-}{}_{n}^{4} X \)
3. \(^{m-4}_{n-2}Y\)
4. \(^{m-6}_{n-4} Z \)
The mass of a nucleus is \(0.042~\text{u}\) less than the sum of the masses of all its nucleons. The binding energy per nucleon of the nucleus is near:
1. \(4.6~\text{MeV}\)
2. \(5.6~\text{MeV}\)
3. \(3.9~\text{MeV}\)
4. \(23~\text{MeV}\)
The binding energy per nucleon in deuterium and helium nuclei are \(1.1\) MeV and \(7.0\) MeV, respectively. When two deuterium nuclei fuse to form a helium nucleus the energy released in the fusion is:
1. \(2.2\) MeV
2. \(28.0\) MeV
3. \(30.2\) MeV
4. \(23.6\) MeV