In a Geiger-Marsden experiment, what is the distance of the closest approach to the nucleus of a \(7.7\) MeV \(\alpha\)-particle before it comes momentarily to rest and reverses its direction?
1. \(10\) fm
2. \(25\) fm
3. \(30\) fm
4. \(35\) fm
It is found experimentally that \(13.6~\text{eV}\) energy is required to separate a hydrogen atom into a proton and an electron. The velocity of the electron in a hydrogen atom is:
1. \(3.2\times10^6~\text{m/s}\)
2. \(2.2\times10^6~\text{m/s}\)
3. \(3.2\times10^6~\text{m/s}\)
4. \(1.2\times10^6~\text{m/s}\)
Statement I: | \(n^\text{th}\) Bohr orbit in an atom is directly proportional to \(n^3.\) | The time period of revolution of an electron in its
Statement II: | \(n^\text{th}\) Bohr orbit in an atom is directly proportional to \(n.\) | The K.E. of an electron in its
1. | Statement I is incorrect and Statement II is correct. |
2. | Both Statement I and Statement II are correct. |
3. | Both Statement I and Statement II are incorrect. |
4. | Statement I is correct and Statement II is incorrect. |
According to the classical electromagnetic theory, the initial frequency of the light emitted by the electron revolving around a proton in the hydrogen atom is: (The velocity of the electron moving around a proton in a hydrogen atom is \(2.2\times10^{6}\) m/s)
1. \(7.6\times10^{13}\) Hz
2. \(4.7\times10^{15}\) Hz
3. \(6.6\times10^{15}\) Hz
4. \(5.2\times10^{13}\) Hz
A \(10~\text{kg}\) satellite circles earth once every \(2~\text{h}\) in an orbit having a radius of \(8000~\text{km}\). Assuming that Bohr’s angular momentum postulate applies to satellites just as it does to an electron in the hydrogen atom. The quantum number of the orbit of the satellite is:
1. \(2.0\times10^{43}\)
2. \(4.7\times10^{45}\)
3. \(3.0\times10^{43}\)
4. \(5.3\times10^{45}\)
The minimum orbital angular momentum of the electron in a hydrogen atom is:
1. \(h\)
2. \(h/2\)
3. \(h/2\pi\)
4. \(h/ \lambda\)
Let \(L_1\) and \(L_2\) be the orbital angular momentum of an electron in the first and second excited states of the hydrogen atom, respectively. According to Bohr's model, the ratio \(L_1:L_2\) is:
1. \(1:2\)
2. \(2:1\)
3. \(3:2\)
4. \(2:3\)