Consider the motion of the tip of the second hand of a clock. In one minute (assuming to be the length of the second hand), its:
1. | displacement is |
2. | distance covered is |
3. | displacement is zero. |
4. | distance covered is zero. |
Three girls skating on a circular ice ground of radius m start from a point on the edge of the ground and reach a point diametrically opposite to following different paths as shown in the figure. The correct relationship among the magnitude of the displacement vector for three girls will be:
1.
2.
3.
4.
A cat is situated at point () and a rat is situated at point (). The cat is free to move but the rat is always at rest. The minimum distance travelled by the cat to catch the rat is:
1. unit
2. unit
3. unit
4. unit
A particle is moving on a circular path of radius When the particle moves from point to (angle ), the ratio of the distance to that of the magnitude of the displacement will be:
1.
2.
3.
4.
1. | 2. | ||
3. | 4. | None of these |
A particle is moving such that its position coordinates are at time at time and at time The average velocity vector from to is:
1. | 2. | ||
3. | 4. |
A car turns at a constant speed on a circular track of radius taking for every circular lap. The average velocity and average speed for each circular lap, respectively, is:
1. | 2. | ||
3. | | 4. |
The coordinates of a moving particle at any time are given by and The speed of the particle at a time is given by:
1. | 2. | ||
3. | 4. |
Two particles and move with constant velocities and At the initial moment their position vector are and respectively. The conditions for particles and for their collision to happen will be:
1. | 2. | ||
3. | 4. |
Two particles move from to and to on a circle of radius and the diameter If the time taken by both particles is the same, then the ratio of magnitudes of their average velocities is:
1.
2.
3.
4.