Assertion (A): | \(\Delta_{\mathrm{r}} \mathrm{G}=-\mathrm{nFE} _{\text {cell }}, \) value \(\Delta_rG \) depends on n. | In equation
Reason (R): | \(E_{cell} \) is an intensive property and \(\Delta_rG \) is an extensive property. |
1. | (A) is false but (R) is true. |
2. | Both (A) and (R) are true and (R) is the correct explanation of (A). |
3. | Both (A) and (R) are true and (R) is NOT the correct explanation of (A). |
4. | (A) is true but (R) is false. |
1. | 3.34 cm-1 | 2. | 1.34 cm-1 |
3. | 3.28 cm-1 | 4. | 1.26 cm-1 |
A. | This equation applies to both strong and weak electrolytes |
B. | Value of the constant A depends upon the nature of the solvent |
C. | Value of constant A is the same for both \(BaCl_2\) and \(MgSO_4\) |
D. | Value of constant A is the same for both \(BaCl_2\) and \(Mg(OH)_2\) |
1. | +1.77 V | 2. | +2.65 V |
3. | +0.01 V | 4. | +0.89 V |
Find the emf of the cell in which the following reaction takes place at 298 K:
\(\mathrm{Ni}(\mathrm{s})+2 \mathrm{Ag}^{+}(0.001 \mathrm{M}) \rightarrow \mathrm{Ni}^{2+}(0.001 \mathrm{M})+2 \mathrm{Ag}(\mathrm{s}) \)
\( \small{\text { (Given that } \mathrm{E}_{\text {cell }}^{\circ}=10.5 \mathrm{~V}, \frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.059 \text { at } \ 298 \mathrm{~K})} \)
1. 1.05 V
2. 1.0385 V
3. 1.385 V
4. 0.9615 V
The three cells with their \(E^\circ_{\text{(cell)}}\) values are given below:
Cells | \(E^\circ_{\text{(cell)}}/V\) | |
(a) | Fe|Fe2+||Fe3+|Fe | 0.404 |
(b) | Fe|Fe2+||Fe3+, Fe2+|Pt | 1.211 |
(c) | Fe|Fe3+||Fe3+, Fe2+|Pt | 0.807 |
1. | -1.212 F, -1.211 F, -0.807 F |
2. | +2.424 F, +2.422 F, +2.421 F |
3. | -0.808 F, -2.422 F, -2.421 F |
4. | -2.424 F, -2.422 F, -2.421 F |
\(\land^o_m\) for NaCl, HCl and \(CH_3COONa \) are 126.4, 425.9, and 91.05 S cm2 mol-1 respectively. If the conductivity of 0.001028 mol L-1 acetic acid solution is \(4.95 \times 10^{-5} S ~cm^{-1} \), the degree of dissociation of the acetic acid solution is-
1. | 0.01233 | 2. | 1.00 |
3. | 0.1233 | 4. | 1.233 |
Two half cell reactions are given below:
\(\begin{aligned} &\mathrm{Co}^{3+}+e^{-} \rightarrow \mathrm{Co}^{2+}, \mathrm{E}_{\mathrm{Co}^{2+} / \mathrm{Co}^{3+}}^{\circ}=-1.81 \mathrm{~V} \\ &2 \mathrm{Al}^{3+}+6 e^{-} \rightarrow 2 \mathrm{Al}(\mathrm{s}), \mathrm{E}_{\mathrm{Al} / \mathrm{Al}^{3+}}^{\circ}=+1.66 \mathrm{~V} \end{aligned} \)
The standard EMF of a cell with feasible redox reaction will be:
1. | +7.09 V | 2. | +0.15 V |
3. | +3.47 V | 4. | –3.47 V |
1. | -200.27 kJ mol-1 | 2. | -212.27 kJ mol-1 |
3. | -212.27 J mol-1 | 4. | -200.27 J mol-1 |