A satellite whose mass is m, is revolving in a circular orbit of radius r, around the earth of mass M. Time of revolution of the satellite is:

1. Tr5GM

2. Tr3GM

3. TrGM2/3

4. Tr3GM2/4

Subtopic:  Kepler's Laws |
 81%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


The distance of a planet from the sun is 5 times the distance between the earth and the sun. The time period of the planet is: 

1. 53 / 2 years 2. 52 / 3  years
3. 51 / 3  years  4. 51 / 2  years 
Subtopic:  Kepler's Laws |
 80%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


A planet moves around the sun. At a point P, it is closest to the sun at a distance \(d_1\) and has speed \(v_1.\) At another point Q, when it is farthest from the sun at distance \(d_2,\) its speed will be:

1. \(d_2v_1 \over d_1\) 2. \(d_1v_1 \over d_2\)
3. \(d_1^2v_1 \over d_2\) 4. \(d_2^2v_1 \over d_1\)
Subtopic:  Kepler's Laws |
 81%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


A satellite that is geostationary in a particular orbit is taken to another orbit. Its distance from the centre of the earth in the new orbit is \(2\) times that of the earlier orbit. The time period in the second orbit is:
1. \(48\)2 hr
2. \(48\) hr
3. \(24\)2 hr
4. \(24\) hr

Subtopic:  Kepler's Laws |
 74%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


If \(A\) is the areal velocity of a planet of mass \(M,\) then its angular momentum is:

1. \(\frac{M}{A}\) 2. \(2MA\)
3. \(A^2M\) 4. \(AM^2\)
Subtopic:  Kepler's Laws |
 75%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


Kepler's third law states that the square of the period of revolution (T) of a planet around the sun, is proportional to the third power of average distance r between the sun and planet i.e. T2= Kr3, here K is constant. If the masses of the sun and planet are M and m respectively, then as per Newton's law of gravitation, the force of attraction between them is F = GMmr2, here G is the gravitational constant. The relation between G and K is described as:

1. GK = 4π2

2. GMK = 4π2

3. K = G

4. K = IG

Subtopic:  Kepler's Laws |
 78%
From NCERT
NEET - 2015

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


The figure shows the elliptical orbit of a planet \(m\) about the sun \(\mathrm{S}.\) The shaded area \(\mathrm{SCD}\) is twice the shaded area \(\mathrm{SAB}.\) If \(t_1\) is the time for the planet to move from \(\mathrm{C}\) to \(\mathrm{D}\) and \(t_2\) is the time to move from \(\mathrm{A}\) to \(\mathrm{B},\) then:
           

1. \(t_1>t_2\) 2. \(t_1=4t_2\)
3. \(t_1=2t_2\) 4. \(t_1=t_2\)


Subtopic:  Kepler's Laws |
 71%
From NCERT
AIPMT - 2009

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


If R is the radius of the orbit of a planet and T is the time period of the planet, then which of the following graphs correctly shows the motion of a planet revolving around the sun?

1.     2.
3. 4.  

Subtopic:  Kepler's Laws |
 78%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


If two planets are at mean distances d1 and d2 from the sun and their frequencies are n1 and n2 respectively, then:

1. n12d12=n2d22                                 

2. n22d23=n12d13

3. n1d12=n2d22                                   

4. n12d1=n22d2

Subtopic:  Kepler's Laws |
 67%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


The time period of a geostationary satellite is 24 h, at a height of 6RE (RE is the radius of the earth) from the surface of the earth. The time period of another satellite whose height is 2.5RE from the surface will be:

1. 62h

2. 122h

3. 242.5h

4.  122.5h

Subtopic:  Kepler's Laws |
 68%
From NCERT
NEET - 2019

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.