Mn2+ compounds are more stable than Fe2+ compounds towards oxidation in their +3 state because :
1. | 3d5 configuration is more stable than 3d6 configuration. |
2. | 3d6 configuration is more stable than 3d5 configuration. |
3. | 3p5 configuration is less stable than 3p6 configuration. |
4. | 3p6 configuration is less stable than 3p5 configuration. |
Transition metals show paramagnetic behaviour due to:
1. | Paired electrons in the (n-1) d-orbitals | 2. | Unpaired electrons in the (n-1) d-orbitals |
3. | Due to \(d^{10},\) and \(d^{0}\) configuration | 4. | None of the above |
The correct statement(s) about interstitial compounds is/are:
1. | Transition elements are large in size and contain multiple interstitial sites. |
2. | Transition elements can trap atoms of other elements. |
3. | Interstitial compounds are chemically inert. |
4. | All of the above. |
An element among the following that exhibits the maximum oxidation state is:
1. Cr
2. Mn
3. Fe
4. V
Match the properties given in Column I with uses given in Column II
Column I-(Property) | Column II-(Metal) | ||
A. | An element that can show +8 oxidation state | 1. | Mn |
B | 3d block element that can show up to +7 | 2. | Cr |
C | 3d block element with the highest melting point | 3. | Os |
4. | Fe |
A | B | C | |
1. | 3 | 1 | 2 |
2. | 1 | 2 | 3 |
3. | 1 | 4 | 3 |
4. | 4 | 2 | 3 |
The d-block elements that may not be regarded as transition elements are :
1. | Mn, Fe, Ni because these have partially filled d-subshell. |
2. | Mn, Fe, Ni because these have completely filled d-subshell. |
3. | Zn, Cd, and Hg because these have completely filled d-subshell. |
4. | Zn, Cd, and Hg because these have partially filled d-subshell. |
The correct statement(s) regarding the oxidation state of transition elements is/are:
1. | The oxidation state can vary from +1 to +7 | 2. | Variable oxidation states are possible. |
3. | Both (1) and (2) | 4. | None of the above |
Match the catalysts given in Column I with the processes given in Column II.
Column I - (Catalyst) | Column II - (Process) | ||
A. | Ni in the presence of hydrogen | 1. | Contact process |
B. | Cu2Cl2 | 2. | Vegetable oil to ghee |
C. | V2O5 | 3. | Sandmeyer reaction |
D. | Finely divided iron | 4. | Haber's process |
5. | Decomposition of KClO3 |
Codes
A | B | C | D | |
1. | 3 | 4 | 2 | 5 |
2. | 2 | 3 | 1 | 4 |
3. | 5 | 4 | 3 | 2 |
4. | 4 | 5 | 3 | 2 |
An element that does not show variable oxidation state is:
1. | Fe | 2. | Mn |
3. | Cu | 4. | Zn |
The correct statement(s) about transition elements is/are:
1. | The lowest oxide of a transition metal is basic, the highest is amphoteric/acidic. |
2. | A transition metal exhibits the highest oxidation state in oxides and fluorides. |
3. | The highest oxidation state is exhibited in the oxoanions of a metal. |
4. | All of the above. |