A parallel plate capacitor with circular plates of radius 1 m has a capacitance of 1 nF. At t = 0, it is connected for charging in series with a resistor R = 1 M across a 2V battery (as shown in the figure). Find the magnetic field at a point P, halfway between the centre and the periphery of the plates, after t = 10–3 s. (The charge on the capacitor at time t is q (t) = CV[1 – exp (–t/)], where the time constant is equal to CR.)
A plane electromagnetic wave of frequency 25 MHz travels in free space along the x-direction. At a particular point in space and time, \(\vec{E_{0}}=6.3~ \hat{j}~V/m\). What is \(\vec{B_{0}}\) at this point?
1. \(2.1\times 10^{-8} \hat{k}~\text{T}\)
2. \(1.2\times10^{-8} \hat{k}~\text{T}\)
3. \(2.1\times10^{-8} \hat{j}~\text{T}\)
4. \(1.2\times10^{-8} \hat{j}~\text{T}\)
The magnetic field in a plane electromagnetic wave is given by \(\mathrm{B}=\left(2 \times 10^{-7}\right) \mathrm{T} \sin \left(0.5 \times 10^3 \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right )\). The wavelength and frequency of the wave are respectively:
1. | \( 2.16 \mathrm{~cm}, 24.1 \mathrm{~GHz} \) |
2. | \( 0.29 \mathrm{~cm}, 13.7 \mathrm{~GHz} \) |
3. | \( 3.23 \mathrm{~cm}, 20.0 \mathrm{~GHz} \) |
4. | \( 1.26 \mathrm{~cm}, 23.9 \mathrm{~GHz}\) |
The magnetic field in a plane electromagnetic wave is given by \(\mathrm{B}=\left(2 \times 10^{-7}\right) \mathrm{T} \sin \left(0.5 \times 10^3 \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right)\). The expression for the electric field is:
1. \(
\mathrm{E}_{\mathrm{z}}=60 \sin \left(0.5 \times 10^3 \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \mathrm{V} / \mathrm{m}
\)
2. \( \mathrm{E}_{\mathrm{z}}=60 \sin \left(1.5 \times 10^3 \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{V} / \mathrm{m}
\)
3. \( \mathrm{E}_{\mathrm{z}}=55 \sin \left(0.5 \times 10^3 \mathrm{x}+1.5 \times 10^{11} \mathrm{t}\right) \mathrm{V} / \mathrm{m}
\)
4. \( \mathrm{E}_{\mathrm{z}}=55 \sin \left(1.5 \times 10^3 \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{V} / \mathrm{m}\)
Light with an energy flux of 18 W/cm2 falls on a non-reflecting surface at normal incidence. If the surface has an area of 20 cm2, what is the average force exerted on the surface during a 30 minute time span?
Assume a bulb of efficiency \(2.5\%\) as a point source. The peak values of the electric field and magnetic field produced by the radiation coming from a \(100~\mathrm{W}\) bulb at a distance of \(3~\mathrm{m}\) are respectively:
1. | \( 2.5 \mathrm{~V} / \mathrm{m}, ~2.2 \times 10^{-8} \mathrm{~T} \) |
2. | \( 3.6 \mathrm{~V} / \mathrm{m},~ 3.6 \mathrm{~T} \) |
3. | \( 4.07 \mathrm{~V} / \mathrm{m},~ 1.4 \times 10^{-8} \mathrm{~T} \) |
4. | \( 4.2 \mathrm{~V} / \mathrm{m}, ~3.4 \times 10^{-6} \mathrm{~T}\) |