The displacement of a particle along the x-axis is given by . The motion of the particle corresponds to:
1. | simple harmonic motion of frequency ω / π. |
2. | simple harmonic motion of frequency 3 ω / 2 π. |
3. | non-simple harmonic motion. |
4. | simple harmonic motion of frequency ω / 2 π. |
The period of oscillation of a mass \(M\) suspended from a spring of negligible mass is \(T.\) If along with it another mass \(M\) is also suspended, the period of oscillation will now be:
1. \(T\)
2. \(T/\sqrt{2}\)
3. \(2T\)
4. \(\sqrt{2} T\)
A body performs simple harmonic motion about x=0 with an amplitude a and a time period T. The speed of the body at will be:
1.
2.
3.
4.
Which one of the following equations of motion represents simple harmonic motion? (where \(k\), \(k_0\), \(k_1\) and α are all positive.)
1. Acceleration = -\(k_0\)
2. Acceleration = -
3. Acceleration = k
4. Acceleration = kx
Two simple harmonic motions of angular frequency 100 rad s -1 and 1000 rad have the same displacement amplitude. The ratio of their maximum acceleration will be:
1. 1:10
2. 1:102
3. 1:103
4. 1:104
A point performs simple harmonic oscillation of period T and the equation of motion is given by x= a sin .After the elapse of what fraction of the time period the velocity of the point will be equal to half to its maximum velocity?
(1)
(2)
(3)
(4)
An SHM has an amplitude \(a\) and a time period \(T.\) The maximum velocity will be:
1. \({4a \over T}\)
2. \({2a \over T}\)
3. \({2 \pi \over T}\)
4. \({2a \pi \over T}\)
Two particles P and Q start from origin and execute Simple Harmonic Motion along X-axis with same amplitude but with periods 3 seconds and 6 seconds respectively. The ratio of the velocities of P and Q when they meet is -
(1) 1 : 2
(2) 2 : 1
(3) 2 : 3
(4) 3 : 2
The angular velocities of three bodies in simple harmonic motion are with their respective amplitudes as . If all the three bodies have same mass and maximum velocity, then
(a) (b)
(b) (d)
The amplitude of a particle executing SHM is 4 cm. At the mean position the speed of the particle is 16 cm/sec. The distance of the particle from the mean position at which the speed of the particle becomes will be
(1)
(2)
(3) 1 cm
(4) 2 cm