In a hydrogen atom, the electron makes 6.6×1015 rev/sec around the nucleus in an orbit of radius 0.528 Å. What will (A-m2) its magnetic moment be?
1.
2.
3.
4.
A proton of mass and charge is projected with a speed of at an angle of to the X-axis. If a uniform magnetic field of 0.104 Tesla is applied along Y-axis, the path of the proton is:
1. A circle of radius = 0.2 m and time period
2. A circle of radius = 0.1 m and time period
3. A helix of radius = 0.1 m and time period
4. A helix of radius = 0.2 m and time period
The magnetic field at the centre of a circular coil of radius r is times that due to a long straight wire at a distance r from it, for equal currents. Figure here shows three cases : in all cases the circular part has radius r and straight ones are infinitely long. For same current the B field at the centre P in cases 1, 2, 3 have the ratio
(a)
(b)
(c)
(d)
Two straight long conductors AOB and COD are perpendicular to each other and carry currents and . The magnitude of the magnetic induction at a point P at a distance a from the point O in a direction perpendicular to the plane ACBD is:
1. 2.
3. 4.
The charge on a particle Y is double the charge on particle X. These two particles X and Y after being accelerated through the same potential difference enter a region of the uniform magnetic field and describe circular paths of radii and respectively. The ratio of the mass of X to that of Y is:
1.
2.
3.
4.
In the given figure, the electron enters into the magnetic field. It deflects in ...... direction
(1) + ve X direction
(2) – ve X direction
(3) + ve Y direction
(4) – ve Y direction
If the angular momentum of an electron is then the magnitude of the magnetic moment will be
1.
2.
3. ej.2m
4.
A cell is connected between the points A and C of a circular conductor ABCD of centre O with angle AOC = . If and are the magnitudes of the magnetic fields at O due to the currents in ABC and ADC respectively, the ratio is:
1. 0.2
2. 6
3. 1
4. 5
An electron, a proton, a deuteron and an alpha particle, each having the same speed are in a region of constant magnetic field perpendicular to the direction of the velocities of the particles. The radius of the circular orbits of these particles are respectively , , and . It follows that
(1)
(2)
(3)
(4)
An infinitely long conductor PQR is bent to form a right angle as shown. A current I flows through PQR. The magnetic field due to this current at the point M is H1. Now another infinitely long straight conductor QS is connected at Q so that the current is I/2 in QR as well as in QS, The current in PQ remaining unchanged. The magnetic field at M is now The ratio is given by
(a)
(b) 1
(c)
(d) 2