An ionization chamber with parallel conducting plates as anode and cathode has electrons and the same number of singly-charged positive ions per cm3. The electrons are moving at 0.4 m/s. The current density from anode to cathode is . The velocity of positive ions moving towards cathode is :
(1) 0.4 m/s
(2) 16 m/s
(3) Zero
(4) 0.1 m/s
A wire of resistance 10 Ω is bent to form a circle. P and Q are points on the circumference of the circle dividing it into a quadrant and are connected to a Battery of 3 V and internal resistance 1 Ω as shown in the figure. The currents in the two parts of the circle are
(1)
(2)
(3)
(4)
In the given circuit, it is observed that the current I is independent of the value of the resistance R6. Then the resistance values must satisfy
(1)
(2)
(3)
(4)
In the given circuit, with a steady current, the potential drop across the capacitor must be :
(1) V
(2) V / 2
(3) V / 3
(4) 2V / 3
A wire of length L and 3 identical cells of negligible internal resistances are connected in series. Due to current, the temperature of the wire is raised by ΔT in a time t. A number N of similar cells is now connected in series with a wire of the same material and cross–section but of length 2 L. The temperature of the wire is raised by the same amount ΔT in the same time t. The value of N is-
(1) 4
(2) 6
(3) 8
(4) 9
What is the equivalent resistance between terminals A and B of the network?
1.
2. 8 Ω
3. 6 Ω
4.
The effective resistance between points P and Q of the electrical circuit shown in the figure is:
1.
2.
3.
4.
In the circuit element given here, if the potential at point B, VB = 0, then the potentials of A and D are given as
(1)
(2)
(3)
(4)
The current in a conductor varies with time t as where I is in ampere and t in seconds. The electric charge flowing through a section of the conductor during t = 2 sec to t = 3 sec is :
(1) 10 C
(2) 24 C
(3) 33 C
(4) 44 C
A group of N cells whose emf varies directly with the internal resistance as per the equation EN = 1.5 rN are connected as shown in the figure below. The current I in the circuit is
1. 0.51 A
2. 5.1 A
3. 0.15 A
4. 1.5 A