In the circuit shown here, E1 = E2 = E3 = 2 V and R1 = R2 = 4 ohms. The current flowing between points A and B through battery E2 is
(1) Zero
(2) 2 amp from A to B
(3) 2 amp from B to A
(4) None of the above
In the circuit shown below, E1 = 4.0 V, R1= 2 Ω, E2 = 6.0 V, R2 = 4 Ω and R3 = 2 Ω. The current I1 is:
1. 1.6 A
2. 1.8 A
3. 1.25 A
4. 1.0 A
The potential difference across 8 ohms resistance is 48 volts as shown in the figure below. The value of potential difference across X and Y points will be:
1. 160 volt
2. 128 volt
3. 80 volt
4. 62 volt
Two resistances R1 and R2 are made of different materials. The temperature coefficient of the material of R1 is α and of the material of R2 is –β. The resistance of the series combination of R1 and R2 will not change with temperature, if R1/ R2 equals :
(1)
(2)
(3)
(4)
An ionization chamber with parallel conducting plates as anode and cathode has electrons and the same number of singly-charged positive ions per cm3. The electrons are moving at 0.4 m/s. The current density from anode to cathode is . The velocity of positive ions moving towards cathode is :
(1) 0.4 m/s
(2) 16 m/s
(3) Zero
(4) 0.1 m/s
A wire of resistance 10 Ω is bent to form a circle. P and Q are points on the circumference of the circle dividing it into a quadrant and are connected to a Battery of 3 V and internal resistance 1 Ω as shown in the figure. The currents in the two parts of the circle are
(1)
(2)
(3)
(4)
In the given circuit, it is observed that the current I is independent of the value of the resistance R6. Then the resistance values must satisfy
(1)
(2)
(3)
(4)
In the given circuit, with a steady current, the potential drop across the capacitor must be :
(1) V
(2) V / 2
(3) V / 3
(4) 2V / 3
A wire of length L and 3 identical cells of negligible internal resistances are connected in series. Due to current, the temperature of the wire is raised by ΔT in a time t. A number N of similar cells is now connected in series with a wire of the same material and cross–section but of length 2 L. The temperature of the wire is raised by the same amount ΔT in the same time t. The value of N is-
(1) 4
(2) 6
(3) 8
(4) 9
What is the equivalent resistance between terminals A and B of the network?
1.
2. 8 Ω
3. 6 Ω
4.