Thirteen resistances each of resistance R ohm are connected in the circuit as shown in the figure below. The effective resistance between A and B is
(1) 2R Ω
(2)
(3)
(4) R Ω
For what value of unknown resistance X, the potential difference between B and D will be zero in the circuit shown in the figure
(1) 4 Ω
(2) 6 Ω
(3) 2 Ω
(4) 5 Ω
Which arrangement of four identical resistances should be used to draw maximum energy from a cell of voltage V
(1)
(2)
(3)
(4)
An unknown resistance R1 is connected in series with a resistance of 10 Ω. This combinations is connected to one gap of a metre bridge while a resistance R2 is connected in the other gap. The balance point is at 50 cm. Now, when the 10 Ω resistance is removed the balance point shifts to 40 cm. The value of R1 is (in ohm)
(1) 60
(2) 40
(3) 20
(4) 10
A wire has a resistance of 6 Ω. It is cut into two parts and both half values are connected in parallel. The new resistance is :
(1) 12 Ω
(2) 1.5 Ω
(3) 3 Ω
(4) 6 Ω
Six equal resistances are connected between points P, Q and R as shown in the figure. Then the net resistance will be maximum between
(1) P and Q
(2) Q and R
(3) P and R
(4) Any two points
The total current supplied to the circuit by the battery is:
1. 1 A
2. 2 A
3. 4 A
4. 6 A
An electric current is passed through a circuit containing two wires of the same material, connected in parallel. If the lengths and radii of the wires are in the ratio of 4/3 and 2/3, then the ratio of the currents passing through the wire will be
(1) 3
(2) 1/3
(3) 8/9
(4) 2
In circuit shown below, the resistances are given in ohms and the battery is assumed ideal with emf equal to 3 volt. The voltage across the resistance R4 is:
1. 0.4 V
2. 0.6 V
3. 1.2 V
4. 1.5 V
If you are provided three resistances 2 Ω, 3 Ω and 6 Ω. How will you connect them so as to obtain the equivalent resistance of 4 Ω
(1)
(2)
(3)
(4) None of these