A particle is subjected to two simple harmonic motions in the same direction having equal amplitudes and equal frequency. If the resulting amplitude is equal to the amplitude of individual motions, the phase difference between them will be:
1.
2.
3.
4.
The motion of a particle varies with time according to the relation . Then:
1. | The motion is oscillatory but not SHM |
2. | The motion is SHM with an amplitude \(a\sqrt{2}\) |
3. | The motion is SHM with an amplitude \(\sqrt{2}\) |
4. | The motion is SHM with an amplitude \(a\) |
If a particle is executing SHM, with an amplitude A, the distance moved and the displacement of the body in a time equal to its time period are, respectively:
1. | 2A, A | 2. | 4A, 0 |
3. | A, A | 4. | 0, 2A |
A particle undergoes SHM with a time period of 2 seconds. In how much time will it travel from its mean position to a displacement equal to half of its amplitude?
(1)
(2)
(3)
(4)
The uniform stick of mass m length L is pivoted at the centre. In the equilibrium position shown in the figure, the identical light springs have their natural length. If the stick is turned through a small angle , it executes SHM. The frequency of the motion is:
(1)
(2)
(3)
(4) None of these
If the displacement x and the velocity v of a particle executing simple harmonic motion are related through the expression ,then its time period will be:
1. | \(\pi \) | 2. | \(2 \pi \) |
3. | \(4 \pi \) | 4. | \(6 \pi\) |
Two simple pendulums have time periods T and . They start vibrating at the same instant from the mean position in the same phase. The phase difference between them when bigger pendulum completes one oscillation will be:
1.
2.
3.
4.
A simple pendulum is oscillating without damping. When the displacement of the bob is less than maximum, its acceleration vector is correctly shown in:
1. | 2. | ||
3. | 4. |
The variation of acceleration, \(a~\) of a particle executing SHM with displacement \(x~\) is:
1. | 2. | ||
3. | 4. |
A second's pendulum is mounted in a rocket. Its period of oscillation decreases when the rocket:
(1) Comes down with uniform acceleration
(2) Moves around the earth in a geostationary orbit
(3) Moves up with a uniform velocity
(4) Moves up with the uniform acceleration