4.1 From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants.

(i) 3NO(g) N2O(g) ;  Rate = k[NO]2

(ii) H2O2 (aq) + 3I (aq) + 2H+ \(I_{3}^{-}\)  +  2H2O(l) ; Rate = k[H2O2][I-]

(iii) CH3CHO (g) CH4 (g) + CO(g) ; Rate = k[CH3CHO]3/2

(iv) C2H5Cl (g) C2H4 (g) + HCl(g) ; Rate = k[C2H5Cl]

(i)

Step 1:

Given,
Rate = k[NO]2
Therefore, the order of the reaction = 2 

Step 2:

Calculate the dimensions of the rate constants as follows:

\( k=\frac{\text { Rate }}{[N O]^{2}} \\ \begin{aligned} =\frac{mol L^{-1} s^{-1}}{\left(mol L^{-1}\right)^{2}} \\ =\frac{m o l L^{-1} s^{-1}}{m o l^{2} L^{-2}} \\ =mol^{-1}Ls^{-1} \end{aligned}\)

(ii) Given,
rate = 
k[H2O2][I-]

Therefore, order of the reaction = 2 

Calculate the dimensions of the rate constants as follows:

\( k=\frac{\text { Rate }}{[H_{2}O^{2}][I^{-}]} \\ \begin{aligned} =\frac{mol L^{-1} s^{-1}}{\left(mol L^{-1}\right)^{2}} \\ =\frac{m o l L^{-1} s^{-1}}{m o l^{2} L^{-2}} \\ =mol^{-1}Ls^{-1} \end{aligned}\)

(iii)

Step 1:

Given,
rate = k[CH3CHO]3/2
Therefore, order of the reaction = \(\frac{3}{2}\)

Step 2:


 

(iv) Given rate = K C2H5Cl Therefore, order of the reaction =1

k=RateC2H5Cl

Dimension of 

==mol L-1s-1mol L-1
s-1