The length and breadth of a rectangular sheet are 16.2 cm and 10.1 cm, respectively. The area of the sheet in appropriate significant figures and error would be, respectively,
1. 164 ± 3 cm2
2. 163.62 ± 2.6 cm2 
3. 163.6 ± 2.6 cm2 
4. 163.62 ± 3 cm2

(1) Hint: The result should have as many significant figures as there are in the value with the least significant figures.

Step 1: Find the area of the sheet.

Given,

 length l=(16.2±0.1)cm Breadth b=(10.1±0.1)cm Area A=l×b=(16.2cm)×(10.1cm)=163.62cm2 

Rounding off to three significant digits, area A = 164 cm2

Step 2: Find the error.

ΔAA=Δll+Δbb=0.116.2+0.110.1=1.01+1.6216.2×10.1=2.63163.62
  ΔA = A ×2.63163.62=163.62×2.63163.62=2.63cm2       ΔA = 3 cm2 (By rounding off to one significant figure)  Area, A = A ± ΔA = (164 ± 3)cm2