Mass m1 moves on a slope making an angle θ with the horizontal and is
attached to mass m2 by a string passing over a frictionless pulley as
shown in the figure. The coefficient of friction between m1 and the sloping
surface is μ.

(a) If m2>m1sinθ, the body will move up the plane.
(b) If m2>m1(sinθ+μcosθ), the body will move up the plane.
(c) If m2<m1(sinθ+μcosθ), the body will move up the plane.
(d) If m2<m1(sinθμcosθ), the body will move down the plane.

Which of the following statement/s is/are true?

1. (a, d)

2. (a, c)

3. (c, d)

4. (b, d)

(b, d) Hint: Apply Newton's laws of motion.
Let m1 moves up the plane, Different forces involved are shown in the diagram.
N= Normal reaction f= Frictional force T= Tension in the string f=μN=μm1gcosθ
Step 1: Find if the second body moves down.
 For the system (m1+m2) to move up m2g(m1gsinθ+f)>0   m2g(m1gsinθ+μm1gcosθ)>0m2>m1(sinθ+μcosθ)
Hence, option (b) is correct.
Step 2: Find if the first body moves down.
Let the body moves down the plane, in this case, f acts up the plane.
Hence,
m1gsinθf>m2g m1gsinθμm1gcosθ>m2g m1(sinθμcosθ)>m2 m2<m1(sinθμcosθ)
Hence, option (d) is correct.