In the figure, the coefficient of friction between the floor and body B is 0.1. The coefficient of friction between bodies B and A is 0.2. A force F is applied as shown on B. The mass of A is rn/2 and of B is m.

a. The bodies will move together if F = O .25 mg
b. The A will slip with B if F = 0.5 mg
c. The bodies will move together if F = 0.5 mg
d. The bodies will be at rest if F = 0.1 mg
e The maximum value of F for which the two bodies will move together is 0.45 mg


Which of the following statement(s) is/are true?

1. (a, b, d, e)

2. (a, c, d, e)

3. (b, c, d)

4. (a, b, c)

(1) Hint: Apply Newton's laws of motion.
Step 1: Find the combined acceleration.
Consider the adjaænt diagram. The frictional force on B(f1) and frictional force on A(f2) will be as shown.
Let A and B are moving together a common =Ft1mA+mB=Ff1(m/2)+m=2(Ff1)3m
Step 2: Find the pseudo force on A.
 Pseudo force on A=(mA)×a common                             =mA×2(Ff1)3m=m2×2(Ff1)3m=(Ft1)3
The force (F) will be maximum when
                     Pseudo force on A = Frictional force on A
    Fmaxt13=μmAg                          =0.2×m2×g=0.1mg    Fmax=0.3mg+t1                  =0.3mg+(0.1)32mg=0.45mg
Step 3: Analyse each option using Newton's second law of motion.
 Hence, the maximum force unto which bodies will move together is Fmax = 0.45 mg
 (a) Hence, for F=0.25mg<F max  bodies will move together.  (b) For F=0.5mg>Fmax, body A will slip with respect to B .  (c) For F=0.5mg>F max , bodies slip. 
(f1)max=μmBg=(0.1)×32m×g=0.15mg(f2)max=μmAg=(0.2)(m2)(g)=0.1mg
Hence, the minimum force required for the movement of the system (A + B)
Fmin=(f1)max+(f2)max=0.15mg+0.1mg=025mg
 (d) Given, force F=0.1mg<F min  .       Hence, the bodies will be at rest.  (e) Maximum force for combined movement Fmax=0.45mg .