A cricket ball of mass 150 g has an initial velocity u=(3i^+4j^)ms1 and a  final velocityv=(3i^+4j^)ms1, after being hit. The change in momentum (final momentum-initial momentum) is (in kgm/s)

\(1.~zero\)
\(2.~-\left ( 0.45\hat{i}+0.6\hat{j} \right ) \)
\(3.~-\left ( 0.9\hat{i}+1.2\hat{j} \right ) \)
\(4.~-5\left ( \hat{i} +\hat{j}\right ) \)

(c) Hint: The direction of the velocity changes.
Step 1: Find the change in momentum of the ball.
 Given, u=(3i^+4j^)m/s and v=(3i^+4j^)m/s
Mass of the ball = 150 g = 0.15 kg
p = Change in momentum
                     = Final momentum - Initial momentum                      =mvmu                     =m(vu)=(0.15)[(3i^+4j^)(3i^+4j^]]                     =(0.15)[6i^8j^]                     =[0.15×6i^+0.15×8j^]                     =[0.9i^+1.20j^]Hence,   Δp=[0.9i^+1.2j^]