We have 0.5 g of hydrogen gas in a cubic chamber of size 3 cm kept at NTP. The gas in the chamber is compressed keeping the temperature constant till a final pressure of 100 atm. Is one justified in assuming the ideal gas law, in the final state? (Hydrogen molecules can be considered as spheres of radius 1 Ao).

Hint: Use the ideal gas equation.
Step 1: Find the volume of hydrogen molecules.
Assuming hydrogen molecules as spheres of radius 1 Ao.
So, the radius, r=1 Ao
The volume of hydrogen molecules=43πr3
                                                  =43(3.14)(10-10)3
=4×10-30m3
Number of moles of H2=MassMolecular mass
                                  =0.52=0.25
Molecules of H2 present = Number of moles of H2 present ×6.023×1023
                                      =0.25×6.023×1023
 The volume of molecules present = number of molecules x volume of each molecule
                                              =0.25×6.023×1023×4×10-30
=6.023×1023×10-30
=6×10-7m3                           ...(i)
Step 2: Find the final volume of the gas.
Now, if the ideal gas law is considered to be followed,
                                             piVi=pfVf
Vf=pipfVi=1100(3×10-2)3
=27×10-6102
=2.7×10-7m3                          ...(ii)
Hence, on compression, the volume of the gas is of the order of the molecular volume [form Eq. (i) and Eq. (ii)]. The intermolecular forces will play a role and the gas will deviate from ideal gas behaviour.