The displacement of a particle is represented by the equation \(y= 3 \cos \left(\frac{\pi}{4}-\omega t \right)\). The motion of the particle is:

1. simple harmonic with period \(\frac{2\pi}{\omega}\).
2. simple harmonic with period \(\frac{\pi}{\omega}\).
3. periodic but not simple harmonic.
4. non-periodic.

(a) Hint: In SHM, the acceleration is directly proportional to the displacement.
Step 1: Find the velocity of the particle.
Given, \(y = 3 cos (\frac{\pi}{4}-\omega t)\)
The velocity of the particle,
                        \(v= \frac{dy}{dt} = \frac{d}{dt}[3 cos(\frac{\pi}{4}-\omega t)]\)
  =\(-3(-\omega)sin(\frac{\pi}{4}-\omega t)\)
  \(= 3\omega sin(\frac{\pi}{4}- \omega t)\)
Step 2: Find the acceleration of the particle.
Acceleration, \(a = \frac{dv}{dt} = \frac{d}{dt}[3\omega sin(\frac{\pi}{4}-\omega t)]\)
                      =3ω×(-ω) cos(π/4-ωt)=-3ω2cos(π/4-ωt)=-3ω2cos(π/4-ωt)
                      a=-ω2y
As acceleration, a -y
Hence, due to negative sign motion is SHM.
Step 3: Find the time period of the motion.
Clearly, from the equation,
           ω'=ω 
         2πT'=ωT'=2π/ω=2π/ω
So, the motion is SHM with period ω